Help Volume

© 1992-97 Hewlett Packard Company. All rights reserved.

Instrument: HP 16517A 4GHz Timing/1GHz State Logic Analyzer

HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

The HP 16517A provides *timing* analysis at a sample rate of up to 4 GHz. It also offers *state* analysis that uses your target system's clock at speeds of up to 1 GHz. The HP 16517A can be connected to up to 4 HP 16518A expansion cards, giving 80 channels each with a memory depth of 64 Ksamples.

Getting Started

- "Connecting to Your Target System" on page 10
- "Adjusting Skew" on page 16
- "Setting Up a Measurement" on page 17
- "When Something Goes Wrong" on page 35
- "Error Messages" on page 35

Measurement Examples

- "Making a Basic Timing Measurement" on page 22
- "Making a Basic State Measurement" on page 26
- Advanced Measurement Examples (see the *Measurement Examples* help volume)
- "Interpreting the Data" on page 30

More Features

Correlating with Other Instruments (see the HP 16600A/16700A Logic Analysis System help volume)

Using Symbols (see page 86)

Using Markers (see the *Markers* help volume)

"Loading and Saving Logic Analyzer Configurations" on page 34

"Testing the Logic Analyzer Hardware" on page 46

Interface Reference

"The Format Tab" on page 47

"The Trigger Tab" on page 55

The Skew Adjust Tab (see page 16)

"The Symbols Tab" on page 86

"Specifications and Characteristics" on page 81

Main System Help (see the HP 16600A/16700A Logic Analysis System help volume)

Glossary of Terms (see page 113)

HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

1 HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

Connecting to Your Target System 10
Recommended Probe Configurations 10
Probing Accessories 11
Probing System Description 13
Requirements of Target Signals 14

Adjusting Skew 16

Setting Up a Measurement 17

Map the Analyzer to the Target System 17

Set Up the Analyzer 18

Define Trigger Conditions 19

Run the Measurement 20

Examine the Data 20

Making a Basic Timing Measurement 22

Making a Basic State Measurement 26

Interpreting the Data 30 Analysis Using Waveform 30 Analysis Using Listing 32

Loading and Saving Logic Analyzer Configurations 34

When Something Goes Wrong 35 Nothing Happens 35 Error Messages 35 Suspicious Data 44 Interference with Target System 45

Testing the Logic Analyzer Hardware 46

The Format Tab 47

Setting the Acquisition Mode 47

Defining Labels: Mapping Analyzer Channels to Your System 49

Working with Labels 50

Setting the Pod Threshold 53

Activity Indicators 54

The Trigger Tab 55

Setting Up a Trigger 55

Adding and Deleting Sequence Steps 57

Editing Sequence Steps 58

Setting Up Loops and Jumps in the Trigger Sequence 58

Saving and Recalling Trigger Sequences 59

Clearing Part or All of the Trigger 60

Overview of the Trigger Sequence 61

Predefined Trigger Macros 62

Working with User-Defined Macros 69

Defining Resource Terms 72

Trigger Position Control 77

Sample Period (Timing Only) 78

Oversampling: the Samples/Clock Control 78

Arming Control 80

Specifications and Characteristics 81

HP 16517A/18A Logic Analyzer Specifications 81

HP 16517A/18A Logic Analyzer Characteristics 81

What is a Specification 84

What is a Characteristic 84

What is a Calibration Procedure 84

What is a Function Test 85

The Symbols Tab 86

Displaying Data in Symbolic Form 87

Setting Up Object File Symbols 88
To Load Object File Symbols 88
Relocating Sections of Code 90
To Delete Object File Symbol Files 91
Symbol File Formats 91
Creating ASCII Symbol Files 92
Creating a readers.ini File 97

User-Defined Symbols 99

To Create User-Defined Symbols 99
To Replace User-Defined Symbols 99
To Delete User-Defined Symbols 100
To Load User-Defined Symbols 100

Using Symbols In The Logic Analyzer 101
Using Symbols As Trigger Terms 101
Using Symbols as Search Patterns in Listing Displays 102
Using Symbols as Trigger Terms in the Source Viewer 102
Using Symbols as Pattern Filter Terms 103
Using Symbols as Ranges in the Software Performance Analyzer 103

Help - How to Navigate Quickly 106

Help - System Overview 107

Run/Group Run Function 108
Setting a tool for independent or Group Run 109
Setting Single or Repetitive Run 110
Checking Run Status 110
Demand Driven Data 111

Glossary

Index

1

HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

Connecting to Your Target System

You can connect the logic analyzer to your target system either directly or through an *analysis probe*. The HP 16517A/18A logic analyzer has two cables ending in pod housings with leads for probing individual lines. Each logic analyzer is shipped with a Probe Accessories Kit, whose components are described below.

You can also connect to the target system through an analysis probe. The HP 16517A/18A logic analyzer requires a clear connection with no termination, so any analysis probe you use must be non-terminated. Additionally, the HP 16517A/18A logic analyzer does not support inverse assembly.

See Also

"Recommended Probe Configurations" on page 10

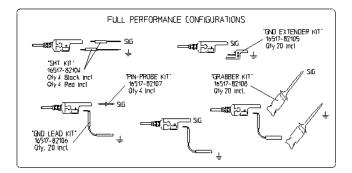
"Probing Accessories" on page 11

"Probing System Description" on page 13

"Requirements of Target Signals" on page 14

Recommended Probe Configurations

Long leads and improper signal connections can result in inconsistent or erroneous data. In an ideal connection, the probe tip connects directly to the target system without any additional lead lengths. Depending on your measurement, the added inductance caused by additional lead length could cause a problem for the signal rise time.


If you must add length to the ground lead, use the following general guidelines:

Target Rise Time Maximum Additional Ground Length

300 ps 1 inch

600 ps 2 inch

1 ns 3 inch

Recommended Configurations

Probing Accessories

The probe accessories described below are part of the probe Accessory Kits supplied with the HP 16517A master and HP 16518A expander *cards*. To order any of these accessories individually, use the part numbers listed below or in the Accessory Kit box.

The probe accessories that plug onto straight pins will fit on 0.63 mm (0.025 in) square pins, or 0.66 mm to 0.84 mm (0.026 in to 0.033 in) diameter round pins.

Ground Leads

The following probing components connect the probe to ground.

Right Angle Ground Lead (HP 16517-82106)

This flexible lead is 1.5 inches long with a 90 degree bend off the lead tip. It stacks on 0.1 inch centers.

Connecting to Your Target System

Ground Extender (HP 16517-82105)

If the circuit can tolerate an additional 0.5 to 1 pF capacitance, this socket allows stacking on 0.1 inch centers.

Ground Connector (HP 16515-27601)

This connector creates a 4-to-1 ground connection.

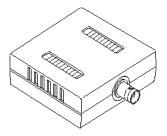
Signal Leads

The following components connect the system to the signal.

Probe Pin (HP 16517-82107)

The probe pin allows touch probing.

SMT Tack-on Signal/Ground Wire (HP 16517-82104)

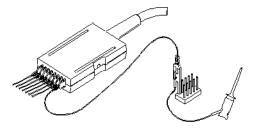

For surface-mount components, PGAs, or cramped areas, this wire can be tacked onto an IC lead for direct connection.

Grabbers (HP 16517-82108)

These 0.05 pitch grabbers attach to IC pins with lead spacing greater than or equal to 0.5 inch.

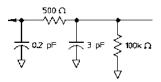
Calibration Pod (HP 16517-63201)

The calibration pod is only included in the accessory kit for the HP 16517A. You use the calibration pod during the skew adjust procedure. See "Adjusting Skew" on page 16 for information on performing the skew adjust procedure.


BNC to SMB Cable Adapter (HP 16517-61604)

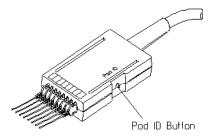
On the back of the HP 16517A card, there are two SMB connectors used for external ECL arm in/out signals. Use this adapter between the BNC cable and the logic analyzer. The adapter cable is only included in the accessory kit for the HP 16517A.

Probing System Description


The HP 16517A/18A logic analyzer probing system consists of shielded cables ending in a pod housing, with 12-inch coaxial cables for the individual probes. The probing accessories are plugged onto the probes.

The pod housing contains termination networks and comparators. The pod housing also shows the equivalent circuit for 4 GHz operation, so

Connecting to Your Target System


that you can calculate pod loading. It is also shown below.

Each probe has a ground connection, which must be used for acceptable signal quality. The accessory kit contains ground extenders. All probe accessories connect to 0.1-inch centers.

Only Pod 1 of the HP 16517A card has a *clock channel*. For *state measurements*, this probe must be connected to the target system's clock.

Pressing the Pod ID button on the pod housing causes a message that identifies the pod to appear on the logic analysis system.

See Also

"Requirements of Target Signals" on page 14

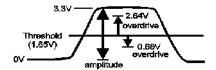
 $Logic\ Analysis\ System\ Installation\ Guide$

HP 16517A/18A 4GHz Timing/1GHz State User's Reference

Requirements of Target Signals

Minimum Signal Amplitude

Any signal line you intend to probe with the logic analyzer probes must supply a minimum voltage swing of 500~mV to the probe tip. If you measure signal lines with a smaller voltage swing, you may not get reliable results. The minimum input overdrive (see page 15) is the greater of 250~mV or 30% of signal amplitude.

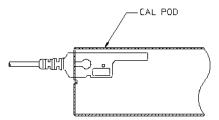

Voltage

Maximum Probe Input The maximum probe input voltage of each logic analyzer probe is 40 volts peak.

Overdrive

Overdrive is the amount a signal must exceed the threshold voltage for the logic analyzer to detect a change in logic level. For the HP 16517A/ 18A logic analyzer, overdrive is 250 mV or 30% of signal peak-to-peak amplitude, whichever is greater.

For example, given a 3.3 volt CMOS signal (low = 0V, high = 3.3 V) the optimal threshold is 1.65 V (50%). If the threshold is set less than 1.0 V or greater than 2.3 V, then a timing acquisition might show excessive channel-to-channel skew. For a state acquisition, the analyzer's setup and hold requirements might not be met.


The overdrive amount is specified as the greater of 250 mV or 30% of the signal amplitude because it has two purposes. The 250 mV ensures reliable switching or state detection. The 30% of amplitude ensures the threshold is reasonably centered within the waveform in order to minimize channel-to-channel skew (t_{PHL} vs t_{PLH}).

Adjusting Skew

Skew adjustment minimizes channel-to-channel skew. This is a necessary step to make sure your HP 16517A/18A logic analyzer meets specifications.

This procedure requires the HP 16517-63201 calibration pod and a BNC coax cable.

- Connect the BNC cable to the Cal port on the back panel of the HP 16517A master card.
- 2. Connect the other end of the BNC cable to the calibration pod's *Cal input*.
- 3. In the HP 16517A/18A 4GHz Timing/1GHz State window, click the Skew Adjust tab.
- 4. Click Start.
- 5. Follow the instructions on screen. Be sure to plug the probes all the way into the module, as shown below.

The HP 16517A/18A does not require an operational accuracy calibration. To test it against the module specifications, refer to "Testing Performance" in the optional HP 16517A/18A Service Guide, available from your HP Sales Office.

Setting Up a Measurement

There are six basic steps for any measurement.

- 1. "Map the Analyzer to the Target System" on page 17
- 2. "Set Up the Analyzer" on page 18
- 3. "Define Trigger Conditions" on page 19
- 4. "Run the Measurement" on page 20
- 5. "Examine the Data" on page 20
- 6. Refine measurement by repeating steps 3 5.

If you load a configuration file, it will set up the logic analyzer and trigger sequence. For your particular measurement, you may need to change some settings.

See Also

"Making a Basic Timing Measurement" on page 22

"Making a Basic State Measurement" on page 26

Measurement Examples (see the *Measurement Examples* help volume)

Making Basic Measurements for a self-paced tutorial

Map the Analyzer to the Target System

The first step is to physically connect the logic analyzer to your target system in a way that makes sense.

Connect Pods

The logic analyzer pods detect the signals on your target system. Attach pods in a way that keeps logically related channels together. Be sure to ground each probe.

If you plan on making *state measurements*, be sure to connect the clock probe on Pod 1 of the HP 16517A *master card* to your target

Chapter 1: HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

Setting Up a Measurement

system's clock line.

Step 2: Set Up the Analyzer (see page 18)

See Also

"Connecting to Your Target System" on page 10

Set Up the Analyzer

The next step is to set up the logic analyzer. These controls are grouped under the *Format* tab. If you load a configuration file, this step is taken care of for you.

Set Measurement Type and Clocks

The logic analyzer can perform state or timing measurements. State measurements are also known as synchronous or logic measurements. Timing measurements are also known as asynchronous, internal clock, or periodic measurements. State measurements use the target system's clock to determine when to sample. Timing measurements sample at a fixed rate which you select.

For state measurements, you must specify a clock edge to match the clocking arrangement used by your target system. If the clock is incorrect, the trace data may indicate a problem where there isn't one.

Group Bits With Labels

Pod fields correspond to the cables on the logic analyzer module. The bits in the pod fields correspond to the individual signals monitored by the pods. Bits with activity on them show double-headed arrows, like

so $^{\ \ \ \ }$. Labels group bits into logical signals; for example, "addr bus". These groupings are then used in the trigger tab and the data displays. A label can have up to 32 channels. Each measurement can define 126 labels.

Step 3: Define Trigger Conditions (see page 19)

See Also

"Setting the State Clock" on page 48

"Assigning Bits to a Label" on page 50

"The Format Tab" on page 47

Define Trigger Conditions

The third step is to define the trigger. Controls for this are located under the *Trigger* tab. Configuration files saved from previous measurements automatically define trigger conditions.

Define Terms

If you think of labels as variables, terms are the specific values the variables can assume. A hardware metaphor would be that labels are bits, and terms are the specific values. Terms can match patterns and edges.

For example, if you wanted to trigger on a write to a specific address, first you'd group the address bus into a label and then you'd set up a term based on that label with the address.

Set Up a Trigger Sequence

The trigger sequence is like a small program that controls when the logic analyzer stores data. There are trigger macros for the common tasks, or you can set up your own. The logic analyzer starts at the first trigger level until either the main branch or the "else" condition becomes true. When that happens, it goes to the next level and follows the instructions there.

Step 4: Run the Measurement (see page 20)

See Also

"Defining Resource Terms" on page 72

"Setting Up a Trigger" on page 55

"The Trigger Tab" on page 55

Measurement Examples (see the *Measurement Examples* help volume)

Run the Measurement

You run the measurement by selecting a button sometimes labeled Run, sometimes Group Run, sometimes Run All. The difference between the three types is that Run starts only the instrument you are using, $Group\ Run$ starts all instruments attached to group run in the Intermodule window, and $Run\ All$ starts all instruments currently placed in the workspace.

Runs can be single or repetitive. Single runs gather data until the logic analyzer memory is full, and then stop. Repetitive runs keep repeating the same measurement and are useful for gathering statistics. Repetitive runs on a logic analyzer do not do equivalent time sampling like oscilloscopes do.

If you want to stop a run, click *Stop*.

Step 5: Examine the Data (see page 20)

Examine the Data

Data from your measurement can be viewed in various display windows or offline. Some of the things you can do in the display windows are

- Gather statistics
- Search for patterns
- Display time-correlated data

Automatically gather statistics

In the repetitive mode, set markers on data points you are interested in and then select repetitive run.

Search for patterns

Using markers, you can search displays for certain values. There are two global markers which keep their place across all measurement views, even across instruments.

Display correlated data

There are several tools for correlation. The Intermodule window allows you to specify complex triggering configurations using several instruments. It is also useful for starting acquisitions at the same time. Global markers mark the same events in different displays, so you can switch views without having to reorient yourself. The Compare tool lets you compare two different acquisitions to look for changes.

See Also

Working with Markers (see the *Markers* help volume)

Using the Chart Display Tool (see the Chart Display Tool help volume)

Using the Distribution Display Tool (see the *Distribution Display Tool* help volume)

Using the Listing Display Tool (see the *Listing Display Tool* help volume)

Using the Digital Waveform Display Tool (see the *Waveform Display Tool* help volume)

Using the Compare Analysis Tool (see the *Compare Tool* help volume)

"Interpreting the Data" on page 30

Making a Basic Timing Measurement

This example uses the circuit board that is supplied with the *Making Basic Measurements* kit as the target system. The kit is supplied with every logic analysis system, or can be ordered from your HP Sales Office.

There are nine major steps to making a basic measurement. When using the HP 16517A/18A logic analyzer with the training board, you need to connect pod 1 of an HP 16550, 16554, 16555, or 16556 logic analyzer to J1 of the training board in order to supply power.

Map the Logic Analyzer to the Target System

- 1. Connect probes.
 - a. Using ground extenders, connect the probes of Pod 1 to J2. You need to ground each probe.
 - b. Connect Pod 1 of the other logic analyzer to J1 on the target system to provide power.
- 2. On the HP 16600A-series or HP 16700A logic analysis system, open the HP 16517 logic analyzer setup window.
 - a. In the main window, *right-click* the logic analyzer icon.
 - b. Select Setup... from the menu.
- 3. If the logic analyzer is not already set for *Timing*, change the type to *Timing*.
 - a. Click the Format tab.
 - b. Click the Type field and select *Timing Full Channel*.
- 4. Group channels with *labels*.
 - a. Optional Insert a second label.
 - 1. Right-click *Lab1*.
 - 2. Select Insert after....

- 3. In the Enter Label Name box, click OK.
- b. Optional Rename Lab1
 - 1. Right-click *Lab1*.
 - 2. Select Rename....
 - 3. Enter a new name in the name field.
 - 4. Click OK to dismiss the Rename Label box.
- Right-click the bit assignment field.
 The bit assignment field is the field to the right of a label name, and under a pod column.
- d. Select ****** from the menu.

 If none of the choices match your own system, select *Individual*...

 and click on the individual bits to assign them (*) or ignore them (.).
- 5. Define trigger terms for a bus.
 - a. Click the *Trigger* tab.
 - b. Optional Rename pattern term patt1.
 - 1. Click in the patt1 field.
 - 2. Enter a new name.
 - c. Select the appropriate label.
 - 1. Click the label field immediately to the right of the term name.
 - 2. To define the term as a combination of labels, click *Insert*... To use a different label to define the term, click *Replace*...
 - 3. In the dialog box, click the label name you want to use and then click *OK*.
 - d. Click in the field with XX and enter the value you want to trigger on.
- 6. Define trigger terms for an edge.
 - a. Click the *Edge* tab in the lower part of the window.
 - b. Optional Rename edge 1.
 - 1. Click in the *edge1* field.

Making a Basic Timing Measurement

- 2. Enter a new name.
- c. Select the appropriate label.
 - 1. Click the label field immediately to the right of the term name.
 - 2. To define the term as a combination of labels, click *Insert...* To use a different label to define the term, click *Replace...* Edges within a term are always OR'd together, which means only one of the edges on one of the labels needs to occur for the edge term to become true.
 - 3. In the dialog box, click the label name you want to use and then click *OK*.
- d. Click the edge assignment field (.....) and enter the edge or edges you want to trigger on. Remember, if more than one edge is specified, then when the logic analyzer detects any of the edges the term becomes true.
- 7. Add the edge term to the trigger sequence.
 - a. Select *Modify* from the menu bar, then *Break down macros*.
 - b. Right-click the 1 box and select Edit...
 - c. In the dialog box, click the patt1 button and select Combo...
 - d. In the Combination box, click Off next to edge1 and select On.
 - e. Click the Or box where the path from patt1 and the path from edge1 come together, and select And.
 - f. Click on *OK*.

The analyzer is now set to trigger when it detects edge1 and patt1 is on the bus. The trigger sequence window shows

Find "(patt1*edge)" then TRIGGER

.

The logic analyzer automatically triggers on the first trigger term. You can set up more complex triggers by editing the sequence levels and defining additional trigger terms.

See Also

"The Trigger Tab" on page 55

1. Click Run.

2. Examine the data.

- a. Click the blue Navigate button.
- b. Point to 4 GHz/1 GHz in the menu and select Waveform.

 Depending on what other instruments are active, there may be more than one 4 GHz/1 GHz. Choose the one that refers to your analyzer.
- c. To have the waveform display appear automatically when you run the logic analyzer, select Options -> Popup on Run -> On in the menu bar of the waveform display.
- d. To insert additional labels, or expand overlaid signals, right-click the label name.

See Also For Connection Information

Logic Analysis System Installation Guide

For Details on the Training Board or More Tutorials

Making Basic Measurements

Examples of Typical Timing Measurements

Hardware Turn-On (see the *Measurement Examples* help volume) measurements.

Firmware Development (see the $Measurement\ Examples$ help volume) measurements.

System Integration (see the *Measurement Examples* help volume) measurements.

For Details on the Logic Analyzer Interface

"The Format Tab" on page 47

"The Trigger Tab" on page 55

Making a Basic State Measurement

This example uses the circuit board that is supplied with the *Making Basic Measurements* kit as the target system. The kit is supplied with every logic analysis system, or can be ordered from your HP Sales Office.

There are ten major steps to making a basic measurement. When using the HP 16517A/18A logic analyzer with the training board, you need to connect pod 1 of an HP 16550, 16554, 16555, or 16556 logic analyzer to J1 of the training board in order to supply power.

Map the Logic Analyzer to the Target System

- 1. Connect probes.
 - a. Using ground extenders, connect the probes of Pod 1 to J2. You need to ground each probe. Be sure to connect the CLK probe to CLK1 of the target system.
 - b. Connect Pod 1 of the logic analyzer to J1 on the target system.
- 2. On the HP 16600A-series or HP 16700A logic analysis system, open a logic analyzer setup window.
 - a. In the main window, right-click the logic analyzer icon.
 - b. Select Setup... from the menu.
- 3. If the logic analyzer is not already set for *State*, change the type to *State*.
 - a. Click the Format tab.
 - b. Click the Type field and select State Full Channel.
- 4. Check that the logic analyzer is detecting a clock signal.

The *Clock Period* display shows the measured target system clock. For the training board, the clock is about 40 ns.

If the Clock Period display shows a line, the logic analyzer is not detecting any clock. Check that the CLK probe of Pod 1 of the *master card* is connected to CLK1 of J2 on the training board, and that the probe is grounded. If there is still no activity, check that the other logic analyzer is

connected to J1 to supply power.

- 5. Group channels with *labels*.
 - a. Optional Insert a second label.
 - 1. Right-click *Lab1*.
 - 2. Select Insert after....
 - 3. In the Enter Label Name box, click OK.
 - b. Optional Rename *Lab1*.
 - 1. Right-click *Lab1*.
 - 2. Select Rename....
 - 3. Enter a new name in the name field.
 - 4. Click OK to dismiss the Rename Label box.
 - Right-click the bit assignment field.
 The bit assignment field is the field to the right of a label name, and under a pod column.
 - d. Select ****** from the menu.

 If none of the choices match your own system, select *Individual*...

 and click on the individual bits to assign them (*) or ignore them (.).
- 6. Define trigger terms for patterns on buses.
 - a. Click the *Trigger* tab.
 - b. Optional Rename term patt1.
 - 1. Click in the patt1 field.
 - 2. Enter a new name.
 - c. Select the appropriate label.
 - 1. Click the label field immediately to the right of the term name.
 - 2. To define the term as a combination of labels, click *Insert*... To use a different label to define the term, click *Replace*...
 - 3. In the dialog box, click the label name you want to use and then click OK.

Making a Basic State Measurement

- d. Click in the field with XX and enter the value you want to trigger on.
- e. Optional Repeat steps a d for term patt2.
- 7. Optional Add additional trigger terms to the trigger sequence.

 The logic analyzer automatically triggers on *patt1*, the first trigger term.

 You can set up more complex triggers by editing the sequence levels and combining trigger terms.
 - a. Right-click the 1 box and select Edit...
 - b. In the dialog box, click the patt1 button and select Combo...
 - c. In the Combination box, click *Off* next to patt2 and select On.
 - d. To change the trigger to patt1 and patt2, click the Or box to the right of the terms and select And.
 - e. Click on OK.
 - f. Click on Close.

The analyzer is now set to trigger when it detects both the pattern defined by patt1 and the pattern defined by patt2 on the target system's buses. The trigger sequence windows shows

Find 1 occurrence of "(patt1*patt2)" then TRIGGER

See Also

"The Trigger Tab" on page 55

- 1. Click Run.
- 2. Examine the data.
 - a. Click the blue Navigate button.
 - b. Point to 4 *GHz/1 GHz* in the menu and select *Listing*.

 Depending on what other instruments are active, there may be more than one 4 *GHz/1 GHz*. Choose the one that refers to your analyzer.
 - c. To have the listing display appear automatically when you run the logic analyzer, select Options -> Popup on Run -> On in the menu bar of the listing display.
 - d. To insert additional labels, right-click the label name.

See Also For Connection Information

Logic Analysis System Installation Guide

For Details on the Training Board or More Tutorials

Making Basic Measurements

Examples of Typical Timing Measurements

The "Looking at State Events" group under Hardware Turn-On (see the *Measurement Examples* help volume) measurements.

Firmware Development (see the $Measurement\ Examples$ help volume) measurements.

System Integration (see the *Measurement Examples* help volume) measurements.

For Details on the Logic Analyzer Interface

"The Format Tab" on page 47

"The Trigger Tab" on page 55

Interpreting the Data

After you've acquired a trace with the logic analyzer, you can analyze it in the display tools. The logic analysis system also provides filtering and compare tools for more complex analysis.

The logic analyzer is automatically connected to the Waveform and Listing displays when you set up a measurement. To move to that display,

- 1. Right-click the blue Navigate button.
- 2. Move the cursor over the name of the analyzer whose data you want to view.
- 3. Click on Waveform or Listing.
- "Analysis Using Waveform" on page 30
- "Analysis Using Listing" on page 32

Analysis Using Waveform

Example: Looking for a Missing Pattern

You can easily use the waveform tool to make timing measurements. For example, if you were triggering when a pattern doesn't follow an edge within a certain time (see the *Measurement Examples* help volume), you would probably want to look at your *data set* to see if the pattern ever did occur. This might be the case when you verifying that the system is responding to an interrupt.

After triggering on an instance where the response did not appear quickly enough, you might take these steps in the Waveform display:

- 1. Find the edge.
 - a. Click Search.
 - b. Click the down arrow after the Label field, and select the label

containing the edge.

- c. Click the Value field and type 1.
- d. Click *Next* to locate the edge transition.
- 2. Place a marker on the edge.

Click $Set\ G1$. This sets global marker G1 at the location of the edge you just found.

- 3. Search for the pattern. Searches start at your current location. Since you just set the global marker G1, it indicates where the search starts from.
 - a. Click the down arrow after the Label field, and select the label containing the pattern.
 - b. Click the Value field and type the pattern you are searching for.
 - c. Click the down arrow after the When field and select *Entering*.
 - d. Click *Next* to find the next occurrence of that pattern after G1.

If the logic analysis system cannot find the pattern, a "Value not found" message pops up.

4. Place a marker on the pattern.

Click Set G2. This will set global marker G2 at the location of the pattern.

- 5. Find the time between the edge and the pattern.
 - a. Click Markers.
 - b. In the G2 row, click the down arrow after from, and select G1.

The value after the from field changes to the time between G1 and G2. You can toggle between time and samples by clicking the arrow after the Time or Samples field.

See Also

Using the Digital Waveform Display Tool (see the *Waveform Display Tool* help volume)

Using the Listing Display Tool (see the *Listing Display Tool* help volume)

Using the Chart Display Tool (see the Chart Display Tool help volume)

Using the Distribution Display Tool (see the *Distribution Display Tool* help volume)

Interpreting the Data

Using the Compare Analysis Tool (see the Compare Tool help volume)

Using the Pattern Filter Analysis Tool (see the *Pattern Filter Tool* help volume)

Analysis Using Listing

Listing is more useful than Waveform when your target system is running code because it shows the labels as states rather than transitions. Listing is especially useful when you have defined meaningful symbol names for your states.

Example: Examining a Subroutine

Listing is the preferred display tool for state measurements. for example, if you were trying to see if a subroutine were exiting abnormally, you might want to measure the number of states between entering and exiting the subroutine. After acquiring data with the logic analyzer, you could examine the *data set* in the Listing display like this:

1. Find the start of the subroutine.

Assume the subroutine starts at the address 0x58FC.

- a. Click Search.
- b. Click the down arrow after the Label field, and select ADDR.
- c. Click the Value field, and type in the starting address, 0x58FC.
- d. Click the down arrow after the When field and select *Present*.
- e. Click *Next* or *Prev* to move the display to the address.
- 2. Place a marker on the start of the subroutine.

Click Set G1. This sets global marker G1 at the address you just found.

3. Find the end of the subroutine.

Assume the end of the subroutine is at address 0x58FF. Searches always start at the current location. Since you just set the global marker G1, it indicates where the search starts from.

- a. Click the Value field, and enter 58FF.
- Click Next to find the next occurrence of 0x58FF after the starting address.
- 4. Place a marker on the end of the subroutine.

Click *Set G2* to set global marker G2 at this position. This lets you refer to G2 when you want to know where the subroutine ends.

5. Find the number of states between the start and end of the subroutine.

Since you've placed markers at the start and end of the subroutine, all you have to do is find the number of states between those markers.

- a. Click Markers.
- b. In the G2 row, click the second down arrow and select Sample.
- c. Click the down arrow after from, and select G1.

The value after the from field changes to the number of states between G1 and G2. You can toggle between time and states by clicking the arrow after the Time or Samples field.

Now you know how long the execution stayed in the subroutine, and can also examine the data set between G1 and G2 to look for unusual data.

See Also

Using the Digital Waveform Display Tool (see the *Waveform Display Tool* help volume)

Using the Listing Display Tool (see the *Listing Display Tool* help volume)

Using the Chart Display Tool (see the Chart Display Tool help volume)

Using the Distribution Display Tool (see the *Distribution Display Tool* help volume)

Using the Compare Analysis Tool (see the *Compare Tool* help volume)

Using the Pattern Filter Analysis Tool (see the *Pattern Filter Tool* help volume)

Loading and Saving Logic Analyzer Configurations

The HP 16517A/18A logic analyzer settings and data can be saved to a configuration file. You can also save any tools connected to the logic analyzer. Later, you can restore your data and settings by loading the configuration file into the logic analyzer.

The HP 16517A/18A logic analyzer can only load configuration files that it generated. It cannot load configurations from other logic analyzers.

NOTE:

The HP 16600A-series and HP 16700A logic analysis systems can translate configuration files from HP 16500 and HP 16505 logic analysis systems.

See Also

Loading Configuration Files (see the *HP 16600A/16700A Logic Analysis System* help volume)

Saving Configuration Files (see the HP 16600A/16700A Logic Analysis System help volume)

When Something Goes Wrong

- "Nothing Happens" on page 35
- "Error Messages" on page 35
- "Suspicious Data" on page 44
- "Interference with Target System" on page 45

Nothing Happens

Look for an error message in the *message bar* at the top of the window. A common message is "Waiting for trigger". Another that appears in the Run Status window is "Cannot Run."

If *Run* briefly changed to *Stop* or *Cancel*, click the blue *Navigate* button, click the logic analyzer's slot, then select the Waveform or Listing display.

See Also

"Waiting for Trigger" on page 36

"Cannot Run. External 16517 Clock Period Should be 1 ns to 50 ns" on page $39\,$

"Loss of Sync with External 16517 Clock." on page 40

Error Messages

"Waiting for Trigger" on page 36

"Maximum of 32 Channels Per Label" on page 37

"Using Default 16517/18 Skew Values." on page 37

"16517/18 Skew Values are from a Different Instrument" on page 38

"16517/18 Memory System Failed -- Replace Card(s)" on page 38

When Something Goes Wrong

- "Invalid 16517/16518 Card Configuration." on page 38
- "Cannot Run. External 16517 Clock Period Should be 1 ns to 50 ns" on page 39
- "Measurement Halted in Sequence Level N." on page 39
- "External Clock Out of Spec." on page 40
- "Loss of Sync with External 16517 Clock." on page 40
- "NOTE: Trigger Sequencer Will Not See Oversampled States." on page 41
- "NOTE: 500 MHz Trigger Sequencer Rate Exceeds Sample Rate." on page $41\,$
- "NOTE: Sample Rate Exceeds 500 MHz Trigger Sequencer Rate.\" on page $41\,$
- "Pod XX identified" on page 41

Skew-related Messages

- "Data Channels (X....X..) Are Not Connected Properly" on page 42
- "The Clock is Not Connected Properly" on page 42
- "16517/18 Skew Values Do Not Match Slot Configuration." on page $42\,$
- "16517/18 Skew Values Are From Different Instrument." on page 43
- "Using Default 16517/18 Skew Values." on page $43\,$
- "Invalid 16517/18 Skew Values." on page 44

Waiting for Trigger

This message indicates that the specified trigger pattern has not occurred. This may be expected, as when you are waiting to trigger on an unusual event.

Possible Causes

- Misaligned boundaries for addresses
 - When the target is a microprocessor that fetches only from long-word aligned addresses, if the trigger is set to look for an opcode fetch at an

address that is not properly aligned, the trigger will never be found.

Trigger set incorrectly

Some strategies you can use when verifying or debugging trigger sequence levels are:

- Look at the run status message line or open the Run Status window. It will tell you what level of the sequence the logic analyzer is in.
- Stop the measurement and look at the data that was captured.
- Save the trigger setup, then simplify it to see what part of the sequence
 does get captured. When you learn what needs to be changed, you can
 recall the original trigger setup and make changes to it.

See Also

"Saving and Recalling Trigger Sequences" on page 59

Maximum of 32 Channels Per Label

The logic analyzer can only assign up to 32 channels for each label. If you need more than 32 channels, assign them to two labels and use the labels in conjunction.

See "Adding and Deleting Labels for Terms" on page 76 for how to use more than one label with trigger *terms*.

Using Default 16517/18 Skew Values.

Possible Causes

The HP 16517A 4 GHz Timing/1 GHz State logic analyzer functions best when its channels have been deskewed. This message warns you that the logic analyzer has been moved since it was last deskewed and that measurements might be off.

To deskew the channels, go to the logic analyzer window, click Skew Adjust, and follow the instructions.

See Also

Using the HP 16517A Logic Analyzer (see the HP 16517A 4GHz Timing/1GHz State Logic Analyzer help volume)

16517/18 Skew Values are from a Different Instrument

Possible Causes

· Logic analyzer was last deskewed in a different frame

The HP 16517A logic analyzer is very sensitive to changes in its environment. If you move the logic analyzer from an HP 16500C frame to an HP 16600 or HP 16700 frame, or between an HP 16600 and HP 16700 frame, you should deskew the channels before making measurements.

To deskew the channels, go to the logic analyzer window, click *Skew Adjust*, and follow the instructions.

See Also

Using the HP 16517A Logic Analyzer (see the HP 16517A 4GHz Timing/1GHz State Logic Analyzer help volume)

16517/18 Memory System Failed -- Replace Card(s)

The memory system on the *card* specified has failed. If your HP 16517A or HP 16518A is still under warranty, contact your Hewlett-Packard Sales Office for repair.

Invalid 16517/16518 Card Configuration.

This message appears on power-up if the logic analyzer *module* is not cabled together properly.

Possible Causes

- An HP 16518A is in the frame but not part of a module
 - The HP 16518A is strictly an expansion *card*. It cannot be used on its own without an HP 16517A.
- The cables connecting the cards of the module are on the wrong side.
 - When the expansion card is *above* the HP 16517A master card, use the connector on the *left* side of the cards.
 - When the expansion card is *below* the HP 16517A master card, use the connector on the *right* side of the cards.
 - When the HP 16517A master card is *between* expansion cards, use the connector on the left for the cards above the master card and the connector on the right for the cards below the master card.

"Left" and "right" are when looking at the back of the mainframe.

 You have more than two expansion cards either above or below the HP 16517A master card.

One end of the interconnect cables must be connected to the HP 16517A master card. Since the longest cable has three plugs, this means you can have no more than two cards on either side of the master card.

You are trying to use an HP 16517A master card as an expansion card.

The HP 16517A master card cannot be used as an expansion card. Each module should contain only one HP 16517A.

See Also

HP 16517A/18A User's Reference

Cannot Run. External 16517 Clock Period Should be 1 ns to 50 ns

This message only appears in *state* mode.

Possible Causes

- The clock channel is not connected properly.
- The target system clock period is greater than 50 ns. (Slower than 20 MHz.)

If your target system was running near 20 MHz, the capacitive load from the logic analyzer could slow it down further than 20 MHz.

• The target system clock period is less than 1 ns. (Faster than 1 GHz.)

The HP 16517A/18A logic analyzer is only capable of 1 GHz in state mode. For faster speeds, you need to use timing mode.

Measurement Halted in Sequence Level N.

This message occurs when the HP 16517A/18A logic analyzer was stopped before it triggered.

Possible Causes

You pressed Stop.

If the message bar was displaying "Waiting for Trigger" when you pressed *Stop*, the logic analyzer had not yet found its trigger event. The level is the level in the *trigger sequence* in which it was waiting.

When Something Goes Wrong

• A fatal error occurred.

Some error conditions, such as skew values from a different instrument, are serious enough to cause the logic analyzer to halt a run.

See Also

"Using Default 16517/18 Skew Values." on page 37

"16517/18 Skew Values are from a Different Instrument" on page 38

"Cannot Run. External 16517 Clock Period Should be 1 ns to 50 ns" on page $39\,$

External Clock Out of Spec.

This message only occurs in *state* mode.

Possible Causes

- The target system clock is slightly greater than 50 ns.
- The target system clock is slightly less than 1 ns.

The period of the target system clock is not in the preferred range of 1 ns to 50 ns, but is close enough that the HP 16517A/18A logic analyzer can still run. The data may not be valid, however.

See Also

"Cannot Run. External 16517 Clock Period Should be 1 ns to 50 ns" on page $39\,$

Loss of Sync with External 16517 Clock.

This message only occurs in *state* mode when the logic analyzer loses the clock signal.

Possible Causes

• The clock probe has been disconnected.

Check the target system to make sure the clock probe is still firmly connected to the clock channel of your target system.

• The target system is not running.

Look for activity indicators for the data channels. If they had been showing activity and no longer do, the target system may need to be reset.

The voltage threshold level of Pod 1 has been changed.

The clock channel is on Pod 1 of the master card. If the voltage threshold

level is changed for the data channels, it will also change the voltage threshold for the clock channel. Check the *Format* tab to see if it is set properly.

NOTE: Trigger Sequencer Will Not See Oversampled States.

This message appears when you set the Samples/Clock control (available under the Trigger tab in *state* mode only) to something other than 1.

It is a warning that only states that are synchronous with the clock on the *target system* will be evaluated in the *trigger sequence*.

See Also

"Oversampling: the Samples/Clock Control" on page 78

NOTE: 500 MHz Trigger Sequencer Rate Exceeds Sample Rate.

In timing mode, you have set the sample period to a value greater than 2 ns (slower than 500 MHz). This message lets you know that you could sample data at a faster rate.

NOTE: Sample Rate Exceeds 500 MHz Trigger Sequencer Rate.\

Trigger May Not Be Included In Acquired Data

In *timing* mode, you have set the sample period to a value less than 2 ns (faster than 500 MHz).

Because data will be sampled faster than the trigger sequencer can evaluate it, the *trigger* may not be included in the acquired data.

See Also

"Suspicious Data" on page 44

Pod XX identified

This message appears in the logic analyzer window when the Pod ID button on the side of a pod is pressed. The "XX" is replaced with the letter of the slot the *card* is in, and 1 or 2 to identify the pod.

The message goes away when the logic analysis system detects a

When Something Goes Wrong

mouse movement.

See Also

"Probing System Description" on page 13

Data Channels (X....X...) Are Not Connected Properly

This message only appears when you run the *Skew Adjust* procedure, and one or more *data channels* of the pod being tested are not connected.

The X in the message refers to the channel that is not connected, with the leftmost position referring to channel 1 of the pod being adjusted.

Make sure that all pod probes are plugged completely into the calibration pod. (The top of the probe should completely fill the slot showing on top of the calibration pod.) Click *Continue* in the Pod Connections dialog. If the warning message still appears and the referenced probe is completely plugged in, the probe hardware is broken.

See Also

"Adjusting Skew" on page 16

The Clock is Not Connected Properly

This message appears if you attempt to adjust skew without connecting the clock probe to the calibration pod.

There is only one probe labeled Clk per HP 16517A/18A module , and it is on pod 1 of the HP 16517A card. The clock probe must remain plugged into the calibration pod through the entire skew adjust procedure.

If the clock probe is completely plugged into the calibration pod and you still get this message, the clock channel hardware may be bad.

Contact your Hewlett-Packard sales office for information on repairing the HP $16517A\ card$.

See Also

"Adjusting Skew" on page 16

16517/18 Skew Values Do Not Match Slot Configuration.

This message appears when the logic analysis system is turned on if the

HP 16517A/18A skew values do not match. The skew values are stored in NV-RAM on the HP 16517A *card*.

Possible causes

- The arrangement of HP 16518A expansion cards changed.
- The *module* was moved to another slot of the *frame*.

To correct this situation, run the Skew Adjust procedure.

See Also

"Adjusting Skew" on page 16

16517/18 Skew Values Are From Different Instrument.

This message appears when the logic analysis system is turned on if the HP 16517A/18A skew values are not valid for the current instrument (HP 16600A-series or HP 16700A frame).

Possible causes

• The HP 16517A/18A module was moved from one frame to another.

The skew values are stored in NV-RAM on the HP 16517A *card* and are preserved when the module is moved from one type of analysis frame to another. Because the different frame types have different internal wiring, the skew factors need to be readjusted.

To correct this situation, run the Skew Adjust procedure.

See Also

"Adjusting Skew" on page 16

Using Default 16517/18 Skew Values.

This warning message appears when you start a run if the skew values are set to factory defaults. The factory default skew adjustments are good enough to allow the module to run, but may cause inaccuracies in data correlation.

Possible Causes

The skew factors in NV-RAM aren't valid.

You could have invalid skew factors if the *module* were moved within the

When Something Goes Wrong

frame or if expansion cards were added or removed.

There were no skew factors in NV-RAM.

Until you perform the skew adjust procedure, no skew factors are stored in NV-RAM.

To correct this situation, run the Skew Adjust procedure.

See Also

"Adjusting Skew" on page 16

Invalid 16517/18 Skew Values.

This message appears when the skew values in NV-RAM fail a checksum test.

Possible Causes

- The module was last deskewed in an HP 16500 frame.
- The skew factors have been corrupted.

To correct this situation, run the Skew Adjust procedure.

See Also

"Adjusting Skew" on page 16

Suspicious Data

Intermittent Data Errors

Check for poor connections, incorrect signal levels on the hardware, incorrect logic levels under the logic analyzer's Format tab, or marginal timing for signals.

Unexpected State at Trigger Point

If you are using oversampling in state mode, only the states synchronous with the external clock are evaluated by the trigger sequence. The event you expected may have occurred but not been evaluated. Try setting up the same trigger in timing mode.

Unwanted Triggers

If you are using an inverse assembler or a pipeline, triggers can be caused by instructions that were fetched but not executed. To fix, add the prefetch queue or pipeline depth to the trigger address.

The depth of the prefetch queue depends on the processor that you are analyzing, and can be quite deep.

Another solution which is sometimes preferred with very deep prefetch queues is to add writes to dummy variables to your software. Put the instruction just before the area you want to trigger on, then trigger on the actual write to this variable. Although the instruction is prefetched, the analyzer can be set to only trigger when the write is executed.

See Also

"Oversampling: the Samples/Clock Control" on page 78

Interference with Target System

the Target System

Capacitive Loading on Excessive capacitive loading can degrade signals, resulting in suspicious data or even system lockup. All analysis probes add capacitive loading, as can custom probes you design for your target. To reduce loading, remove as many pin protectors, extenders, and adapters as possible.

> Careful layout of your target system can minimize loading problems and result in better margins for your design.

Testing the Logic Analyzer Hardware

In order to verify that the logic analyzer hardware is operational, run the Self Test utility. The Self Test function of the logic analysis system performs functional tests on both the system and any installed modules.

- 1. If you have any work in progress, save it to a configuration file. (see the *HP 16600A/16700A Logic Analysis System* help volume)
- 2. From the system window, click the *System Admin* icon.
- 3. Click *Admin*, then *Self Test*.... The system closes all windows before starting up Self Test.
- 4. Click *Master Frame*. If the module is in an expansion frame, click *Expansion Frame*.
- 5. Click the 16517A 4GHz Timing/1 GHz State that you want to test.
- 6. In the Self Test dialog box, click *Test All*.

 You can also run individual tests by clicking on them. Tests that require you to do something must be run this way.

If any test fails, contact your local Hewlett-Packard Sales Office or Service Center for assistance.

See Also

Self Test (see the *HP 16600A/16700A Logic Analysis System* help volume)

HP 16517A/18A 4GHz Timing/1GHz State Service Guide

The Format Tab

Format offers control of the internal resources of the logic analyzer. Format selections tell the logic analyzer:

- Whether it will use the full-channel or half-channel data capture mode.
- What is the maximum rate of the sampling clock during measurements.
- Which logic levels to use to interpret captured data.
- What signals are grouped together.
- "Setting the Acquisition Mode" on page 47
- "Defining Labels: Mapping Analyzer Channels to Your System" on page 49

See Also

"Working with Labels" on page 50

"Setting the Pod Threshold" on page 53

"Activity Indicators" on page 54

"Setting the State Clock" on page 48 (State Only)

"State Clock Sample Offset" on page 49 (State Only)

Setting the Acquisition Mode

The acquisition mode sets whether the analyzer uses an internal or external clock to determine when to get data from the target system. This setting also controls the channel width, memory depth, and maximum sampling rate.

In timing acquisition mode the analyzer stores measurement data at each sampling interval, using its own internal clock. In state acquisition mode, the analyzer stores measurement data at each clock edge of the target system.

The Format Tab

To Set the Acquisition Mode

- 1. Click the Mode button.
- 2. Choose the option you want.

 See the references below for more detail on the choices.

State Mode Full Channel 1 GHz

The synchronous state acquisition mode requires an external clock. Both pods are available on all configured cards. Memory depth is 64 Ksamples per channel.

Timing Mode Full Channel 2 GHz

Both pods are available on all cards. Memory depth is 64 Ksamples per channel. The logic analyzer samples at up to 2 GHz.

Timing Mode Half Channel 4 GHz

Both pods are restricted to bits 0 - 3. Memory depth is doubled to 128 K samples per channel. The logic analyzer samples at 4 GHz, and the speed cannot be adjusted.

When you switch from half-channel to full-channel mode, you are asked if you want to restore bits 4 - 7. A 'Yes' answer restores these bits in their previous setting.

See Also (State only)

"Setting the State Clock" on page 48

"State Clock Sample Offset" on page 49

Setting the State Clock

In the State Acquisition mode, the analyzer is controlled by the state clock channel of Pod 1 on the $master\ card$. You can set the logic analyzer to sample the data on either the rising or falling edge of the target system clock.

To Set the State Clock

- 1. Click the Clock field.
- 2. Select either *Rising* or *Falling*.

State Clock Sample Offset

Sample offset... adjusts the relative position of the clock edge with respect to the time the data is sampled.

To Change Sample Offset

- 1. Click the Sample offset... button.
- 2. Choose *Coarse All pods*, *Fine All pods*, or *Fine Individual pods*. "Coarse" has a 200-ps granularity, and "fine" has a 50-ps granularity.
- 3. Adjust the offset. The arrow indicates where the data will be sampled relative to the clock edge.

 If the mode is *Fine Individual pods*, there is an arrow for each pod.
- 4. Click Close.

NOTE:	Changing the mode to $All\ pods$ will erase any offset changes you have made to the individual pods.
NOTE:	The Fine modes are limited to ± 500 ps from the Coarse setting.

Defining Labels: Mapping Analyzer Channels to Your System

Labels group channels with a name that is relevant to your system under test. Both data channels and clock channels from more than one pod can be included in a single label, but labels with clock channels or channels from more than one pod cannot be included in *range terms*.

You can define 126 labels per analyzer. Each label can contain up to 32 channels per label.

To Define a Label

- 1. Click the label name field and select Rename
- 2. Type a new name and click OK.

The Format Tab

- 3. Assign bits (see page 50) to the label.
- 4. If necessary, insert more labels (see page 52) in the list.

See Also

"Working with Labels" on page 50

Working with Labels

Labels are used to group and identify logic analyzer channels so that you can easily remember what signals the various logic analyzer channels refer to.

- "Assigning Bits to a Label" on page 50
- "Reordering the Bits in a Label" on page 51
- "Inserting and Deleting Labels" on page 52
- "Turning Labels On and Off" on page 52
- "Label Polarity" on page 53

Assigning Bits to a Label

The bits in a label correspond to the physical logic analyzer probe channels. When you run the analyzer, data is gathered on all bits (channels) that are assigned to *labels*. Unassigned bits are inactive.

- (*) (asterisk) indicates an assigned bit.
- (.) (period) indicates an unassigned bit.

To Assign Bits

- 1. Click the bit assignment field to the right of the label name you want to define.
 - Each bit assignment field corresponds to the data pod which is listed above $\,$

it.

- 2. Either select one of the predefined groups, or *Individual*.
- 3. In *Individual*, click the bits to toggle them between an asterisk and a period.

You can also hold the left mouse button and move the mouse to assign several bits at once.

NOTE:

Labels can have a maximum of 32 channels assigned to them.

Bits assigned to a label are numbered from right to left. The least significant assigned bit on the far right is numbered 0. The next assigned bit to the left is numbered 1, and so on. Labels can contain bits that are not consecutive; however, bits are always numbered consecutively within a label. Above each column of bit assignment fields is a bit reference line that shows you the bit numbers and activity indicators.

See Also

"Activity Indicators" on page 54

Reordering the Bits in a Label

The bit reorder feature allows the channel order, as it appears in the label, to be assigned independently of the physical order. This feature allows the probe tips for each channel to be physically connected where convenient. The *Reorder* function can then be used to logically rearrange the bits in a label.

To Reorder the Bits in a Label

- 1. Click the label name that you want to reorder.
- 2. Select Reorder Bits.
- 3. Set the bit order by using one of the following options:
 - To reorder the bits individually, for each channel, type the number of the bit you want to map the channel to. You can also use the *Spin Buttons* to scroll through the list of bits.
 - To arrange the bits sequentially, click the button at the top of the dialog, then select *Default Order*.

The Format Tab

• To swap the high and low order bytes or words, click the button at the top of the dialog, then select *Big-Endian/Little-Endian*.

NOTE:

Reordered labels can not be used as range terms in triggers.

Inserting and Deleting Labels

To Insert Additional Labels

- 1. Click the *label* name that you want to insert another label next to.
- 2. Choose Insert before... or Insert after....

To Delete Labels

- 1. Click the label name that you want to delete.
- 2. Choose Delete.

Turning Labels On and Off

You may want to turn off *labels* that you have created so that the label is not displayed. When a label is turned off, its name and bit assignments are preserved.

To Turn Off a Label

- 1. Right-click the label name that you want to turn off.
- 2. Choose *Label [ON]* to toggle it off.

To Turn On a Label

- 1. Right-click the label name that you want to turn on.
- 2. Choose *Label [OFF]* to toggle it on.

To Display a Label that was Off

- 1. Turn on the label.
- 2. At the bottom of the window, click *Apply*. The label's data appears in the display windows.

Label Polarity

The analyzer uses the label polarity to identify patterns and edges when *triggering* on and storing data. The default polarity for all labels is positive (+). Setting the polarity to negative (-) inverts the logic for all bits in a label.

To change the label polarity, select the polarity field, which toggles between positive (+) and negative (-).

NOTE:

It is rare that negative logic would be used on a circuit. If the negative logic parameter is applied to a positive logic circuit, unpredictable results will be obtained.

Setting the Pod Threshold

The pod threshold is a voltage level which the data must cross before the analyzer recognizes it as a change in logic levels. You can specify a threshold level for each pod. The level specified for the master pod that includes the clock is also used for the clock threshold.

To Set the Threshold

- 1. Under the *Format* tab, click the threshold field. The threshold field is located just below the pod name.
- 2. Choose one of the threshold options described below.
- 3. Repeat steps 1 and 2 for the other pods.

NOTE:

The clock threshold level is the same as the level assigned in the Pod Threshold field.

TTL

The threshold level is +1.5 volts.

ECL

The threshold level is -1.3 volts.

Chapter 1: HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

The Format Tab

USER

When USER is selected, the threshold level is selectable from -5.0 volts to +5.0 volts.

Activity Indicators

Activity indicators are located above the column of bit assignment fields. When the logic analyzer is properly connected to an active target system, you see dashes and arrows in the Activity Indicator displays for each channel. An active channel looks like ¹.

A dash at the top of the activity indicator display indicates that the signal connected to that channel is at a logic high. A dash at the bottom indicates that the signal is at a logic low. An arrow indicates that the signal is transitioning.

You can use these indicators to check whether there is proper probe connection: bits that are stuck low may not be properly connected. You can also verify that the signals in your target system are active: bits that are stuck high or low may not be crossing the threshold voltage.

Activity indicators are not displayed during an acquisition.

The *Trigger* tab is used to set up a sequence of steps that determine when the analyzer *triggers*. At the top is a control area where you specify how much data to store before and after the trigger. In the trigger sequence area, you specify the conditions that you want the analyzer to trigger on. In the resource *terms* area at the bottom of the window, you define variables for use in the trigger sequence specification.

- "Setting Up a Trigger" on page 55
- "Adding and Deleting Sequence Steps" on page 57
- "Editing Sequence Steps" on page 58
- "Setting Up Loops and Jumps in the Trigger Sequence" on page 58
- "Saving and Recalling Trigger Sequences" on page 59
- "Clearing Part or All of the Trigger" on page 60

"Overview of the Trigger Sequence" on page 61

"Predefined Trigger Macros" on page 62

"Working with User-Defined Macros" on page 69

"Defining Resource Terms" on page 72

"Trigger Position Control" on page 77

"Oversampling: the Samples/Clock Control" on page 78

"Sample Period (Timing Only)" on page 78

"Arming Control" on page 80

Setting Up a Trigger

When setting up a *trigger sequence*, you typically trigger first on a simple pattern or edge. From that point, you execute an iterative

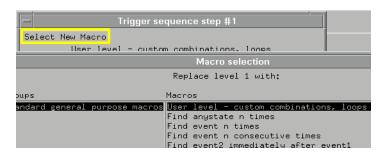
See Also

process of adding or fine-tuning sequence steps until the analyzer consistently triggers at the desired point.

To Set Up a Trigger

- 1. Define resource terms. (see page 72)
- 2. Click the first sequence step; select *Edit*. (see page 56)
- 3. Click Select new macro, select most appropriate macro. (see page 56)
- 4. Edit the sequence step. (see page 58)
- 5. If necessary, add/edit additional sequence steps. (see page 57)

See Also


- "Predefined Trigger Macros" on page 62
- "Working with User-Defined Macros" on page 69
- "Overview of the Trigger Sequence" on page 61

Selecting the Edit of a Sequence Step

To modify a Trigger Sequence Step, click on the step that needs to be modified. Select the *Edit* option from the new window that appears.

Selecting a Macro to Match Trigger Conditions

Review the list of macros and select the one that matches the desired trigger conditions. In most cases one of the predefined macros will satisfy trigger conditions. If none of the predefined macros match choose the *User level* macro.

Selecting a Macro from the List

See Also

"Predefined Trigger Macros" on page 62

Adding and Deleting Sequence Steps

To Add Sequence Steps

- Click the sequence step number that you want to insert other steps around.
- 2. Choose Insert Before or Insert After.
- 3. Choose a macro for the new step.

To Delete Sequence Steps

- 1. Click the sequence step number that you want to delete.
- 2. Choose Delete.

Trigger Sequence Editing Options

When you *click* on a sequence step number, you see a selection menu with choices that allow you to modify the sequence. Choose the option you want from the choices below.

Edit

Changes the contents of the sequence step. You can change the resource *terms* or other assignment fields, such as durations and occurrences.

Copy

Copies the currently selected step. When you copy a level, the new level contains the same macro or user-defined step as the original.

Replace

Replaces the currently selected level. When you replace a level, you pick a new macro or user-level, and it then replaces the old one.

- Delete
 Deletes the level that is currently selected.
- Insert Before / Insert After
 Inserts an additional step before or after the selected step.

Editing Sequence Steps

You can modify the contents of a step in the *trigger* sequence by *editing* it.

To Edit a Sequence Step:

- 1. Click the sequence step number and choose *Edit*....
- 2. To change the macro, *click Select new macro* and choose a different macro from the list.
- 3. Click on a resource term name to choose a different resource term. You can also choose negations of *terms* and combinations of terms.
- 4. Set the values of the other fields, such as durations and occurrence counts.
- 5. Click OK to close the sequence step editing dialog.

If you are editing a user-defined step, refer to:

"Setting Pattern Durations" on page 71

"Using Occurrence Counters" on page 71

"Setting Up Loops and Jumps in the Trigger Sequence" on page 58

Setting Up Loops and Jumps in the Trigger Sequence

To set up loops and jumps in your *trigger sequence*, use *Branches*. Branches are available in most of the *Predefined Macros* and User-

Defined (see page 69) sequence steps. You may need to break down the macros (see page 69) in order to set up branches.

To Set Up a Branch or Loop

- 1. *Click* the *Find* field and choose the term that you want to branch on. The analyzer will take the branch if this term is found.
- 2. Click the *go to* field and select the sequence step that you want to branch to.
- 3. If you want a secondary branch, click the *Else on* field and choose the term that you want to branch on.
- 4. Click the *go to* field and select the sequence step that you want to branch to.

The analyzer starts at the first trigger sequence level. It evaluates the data coming from the *target system* and when the term of either the *find* or *else on* branch becomes true, follows that branch to the next specified level (or triggers). If you are using oversampling, remember that oversampled states are not evaluated.

Timers and occurrence counters are reset when a branch is taken, even if it loops back to the same level.

If both branches become true at the same time, the primary (find) branch is taken. Once the analyzer triggers, it stops evaluating data and simply fills its memory. When the acquisition memory is full, the logic analyzer stops and any analysis or display tools connected to it process the data set.

Saving and Recalling Trigger Sequences

You can save a *trigger* setup independently of configuration files within a session. Recalling the stored trigger sequence specification can change the trigger arming, memory depth, and trigger position as well as the trigger sequence and term definitions. The trigger sequence specification will not change the acquisition mode (full channel vs. half channel).

The HP 16517A/18A logic analyzer can hold up to 10 trigger sequence specifications for State or Timing mode, for a total of 20 specifications. When you exit your HP 16600A-series or HP 16700A session, the trigger sequences are cleared. They can be saved across sessions or be shared among multiple modules as part of a configuration file, however.

To Save a Trigger Sequence

- 1. Type a name for the trigger sequence in the Title field just above the trigger sequence area.
- 2. Click Save.
- 3. Choose a memory location to store the trigger sequence in.

To Recall a Trigger Sequence

- 1. Click Recall.
- 2. Choose the trigger sequence that you want.

Clearing Part or All of the Trigger

To Clear Part or All of the Trigger:

- 1. Select Clear from the menu bar.
- 2. Choose the option you want from the choices described below:
 - All
 Clears sequence steps, resource terms, and resource term names back
 to their default values.
 - Sequence Levels
 Resets the *trigger* sequence to a default sequence.
 - Resource Terms

Resets all resource term assignment fields, including *labels* and values back to their default values.

- Resource Term Names
 Resets all the resource term names to their default values.
- Store/Recall Memories

 Deletes all saved trigger sequence specifications.

Overview of the Trigger Sequence

The *trigger* sequence is a sequence of steps that control the path that the analyzer takes to find the trigger point. The path taken resembles a flow chart, with each step in the sequence being an opportunity to direct the analyzer's selection process in the desired direction. You can edit the overall trigger sequence by adding or deleting sequence steps (see page 57).

Each step in the sequence is either a predefined macro (see page 62) or a user-defined step (see page 69). Both the predefined macros and user-defined steps contain variables that you define. The variables, called resource terms (see page 72) represent edges and bit patterns in the data.

When you run the analyzer, it searches for a match between the resource term values and the measurement data. When a match is found, the sequencing continues to the next step, loops back (see page 58) to a previous step, or jumps ahead (see page 58) to another step. Eventually, a path of "true" steps leads to the trigger point.

Each macro uses one or more of the analyzer's internal sequence levels (see page 62). Each user-defined step uses one internal sequence level.

See Also

"Setting Up a Trigger" on page 55

How the Internal Sequence Levels Are Used

The analyzer has four internal sequence levels that it uses to make up the *trigger sequence*. The levels are used differently, depending on whether you use predefined trigger macros or user-defined steps to construct your trigger sequence.

When you use user-defined steps (see page 69), all of the internal sequence levels are available. Each user-defined sequence level corresponds to one internal level.

When you use predefined trigger macros (see page 62), more than one of the internal sequence levels may be required for a single macro. The exact number of internal levels required per macro is shown in the macro library list. Even though some trigger macros use multiple sequence levels, macros are easier to use, and they are the most efficient way to construct a trigger sequence.

Predefined Trigger Macros

Trigger macros provide a simple way to set up the analyzer to *trigger* on common events and conditions. A library of macros is available for both the *state* and *timing* acquisition modes.

NOTE:

Each macro requires at least one internal sequence level (see page 62), and in some cases, may require multiple levels. The number of levels used by each macro is described in the macro library.

Timing Trigger Macro Library

"Timing User Mode" on page 63

"Basic Timing Macros" on page 63

"Pattern/Edge Combinations" on page 64

"Setup and Hold Violations" on page 65

"Time Violations" on page 65

State Trigger Macro Library

"State User Mode" on page 66

"Basic State Macros" on page 66

"Sequence-Dependent Macros" on page 67

"Time Violations" on page 68

See Also

"Setting Up a Trigger" on page 55

"Defining Resource Terms" on page 72

"Breaking Down and Restoring Macros" on page 69

Timing User Mode

(user-defined macro)

The User level allows you to create a custom *trigger sequence* using a *trigger term*, comparison function, and a jump or loop. This macro uses one internal sequence level.

See Also

Working with User-Defined Macros (see page 69) for more information on the user-defined mode.

Basic Timing Macros

The following basic macros are found in the *Macro selection* window when the analyzer is in the *Timing* mode. Each macro uses one internal sequence level.

• Find anystate n times.

This macro becomes true with the nth state it sees. It uses one internal sequence level.

Find pattern present/absent for > duration.
 This macro becomes true when it finds a pair

This macro becomes true when it finds a pattern you have designated that has been present or absent for greater than or equal to the set duration. It uses one internal sequence level.

• Find pattern present/absent for < duration.

This macro becomes true when it finds a pattern you have designated that has been present or absent for less than the set duration. It uses one internal sequence level.

• Find edge.

This macro becomes true when the edge you have designated is seen. It uses one internal sequence level.

- Find Nth occurrence of pattern present/absent for > duration
 This macro becomes true when it finds the Nth occurrence of a pattern
 that has been present or absent for greater than or equal to the set
 duration. Each valid pattern occurrence is only counted once, even though
 the same occurrence may be valid for multiple sample clocks. It uses one
 internal sequence level.
- Find nth occurrence of an edge.

 This macro becomes true when it finds the designated occurrence of an edge you have selected. Note that the 500-MHz trigger sequencer may not count edges that occur closer than 2 ns. This macro uses one internal sequence level.

Pattern/Edge Combinations

The following macros are found in the *Macro selection* window when the analyzer is in the *Timing* mode. These predefined macros use a pattern, edge, or a combination of both as the *trigger* element. These macros use either one or two internal sequence levels.

• Find edge within a valid pattern.

This macro becomes true when a

This macro becomes true when a selected edge type is seen within the time window defined by a pattern you have designated. It uses one internal sequence level.

- Find pattern occurring too soon after edge.

 This macro becomes true when a pattern you have designated is seen occurring within a set duration after a selected edge type is seen. It uses two internal sequence levels.
- Find pattern occurring too late after edge.

 This macro becomes true when one edge type you have selected occurs, and for a designated period after that first edge is seen, a pattern is not seen. It uses two internal sequence levels.

Setup and Hold Violations

- Find setup or hold violation

 This macro becomes true when there is a change on a selected group of channels which violates the specified setup or hold time criteria with respect to a selected edge. It uses two internal sequence levels.
- Find setup or hold violation clocked by an edge within a valid pattern
 This macro becomes true when either a designated setup or a hold
 criterion is violated on a selected group of channels which are being
 clocked by a selected edge which appears within a designated pattern. It
 uses two internal sequence levels.
- Find setup or hold violation clocked by a pattern/pulse
 This macro becomes true when there is a change on a selected group of
 channels which violates the specified setup or hold time criteria with
 respect to a selected pattern. It uses three internal sequence levels.

Time Violations

The following macros are found in the *Macro selection* window when the analyzer is in the *Timing* mode. These predefined macros are specifically tailored to *trigger* on events occurring out of a predefined time range. These macros use either one or two internal sequence levels.

• Find 2 edges too close together.

This macro becomes true when a second selected edge is seen occurring within a period you have designated after the occurrence of a first selected edge. It uses two internal sequence levels.

• Find 2 edges too far apart.

This macro becomes true when a second selected edge occurs beyond a period you have designated after the first selected edge. It uses two internal sequence levels.

• Find width violations on a pattern/pulse.

This macro becomes true when the width of a pattern violates minimum and maximum width settings you have designated. It uses one internal sequence level.

• Wait t sec.

This macro becomes true after a period you have designated has expired. It uses one internal sequence level.

State User Mode

(User-defined macro)

The User level allows you to create a custom *trigger sequence* using a *trigger* term, comparison function, and a jump or loop. This macro uses one internal sequence level.

See Also

Working with User-Defined Macros (see page 69) for more information on the user-defined mode.

Basic State Macros

The following basic macros are found in the *Macro selection* window when the analyzer is in the *State* mode. Each macro uses one internal sequence level.

• Find anystate n times.

This macro becomes true with the nth state it sees. It uses one internal sequence level.

• Find pattern n times.

This macro becomes true when it sees an event you have designated occurring a designated number of times. The events may occur consecutively, but do not have to. It uses one internal sequence level.

Find pattern n consecutive times.

This macro becomes true when it sees an event you have designated occurring a designated number of consecutive times. It uses one internal sequence level.

• Find pattern2 immediately after pattern1.

This macro becomes true when the first event you have designated is seen immediately followed by a second designated event. It uses two internal sequence levels.

Sequence-Dependent Macros

The following basic macros are found in the *Macro selection* window when the analyzer is in the *State* mode. These macros each *trigger* on a particular sequence of events.

• Find patt2 n times after patt1, before patt3 occurs.

This macro becomes true when it first finds a designated patt1, followed by a selected number of occurrences of a designated patt2. In addition, if a designated patt3 is seen anytime while the sequence is not yet true, the sequence starts over. If patt2's nth occurrence is coincident with patt3, the sequence starts over. It uses two internal sequence levels.

- Find too few states between pattern1 and pattern2.

 This macro becomes true when a designated pattern1 is seen, followed by a designated pattern2, and with fewer than a selected number of states occurring between the two events. It uses two internal sequence levels.
- Find too many states between pattern1 and pattern2.

 This macro becomes true when a designated pattern1 is seen, followed by more than a selected number of states, before a designated pattern2. It uses two internal sequence levels.

Time Violations

The following macros are found in the *Macro selection* window when the analyzer is in the *State* mode. These predefined macros are specifically tailored to *trigger* on events occurring out of a predefined time range. These macros use either one or two internal sequence levels.

- Find pattern2 occurring too soon after pattern1.

 This macro becomes true when a designated pattern1 is seen, followed by a designated pattern2, and with less than a selected period occurring between the two events. It uses two internal sequence levels.
- Find pattern2 occurring too late after pattern1.

 This macro becomes true when a designated pattern1 is seen, followed by at least a selected period, before a designated pattern2 occurs. It uses two internal sequence levels.
- Wait n external clock states.
 This macro becomes true after a number of user clock states you have designated have occurred. It uses one internal sequence level.

Breaking Down and Restoring Macros

When you break down a macro, you gain access to all the resource assignment fields and branching options. You can change these fields to change the *trigger* structure. You might need to do this to create a custom *trigger sequence* or to create loops and jumps.

To Break Down Macros

- 1. Select *Modify* in the Trigger window *menu bar*.
- 2. Choose Break down macros.

The contents of broken down macros are displayed in the long form used in a user-defined sequence step. If the macro uses two of the analyzer's internal sequence levels, (see page 62) both levels are separated out and displayed in the trigger sequence area of the Trigger window.

To Restore Macros

- 1. Select *Modify* in the Trigger window menu bar.
- 2. Choose Restore macros.

Use *Restore macros* to restore all macros to their original structure. Note that when the macros are restored, all changes are lost and any branching that is part of the original structure is restored.

See Also

Working with User-Defined Macros (see page 69) for information on working with macros that are broken down.

Working with User-Defined Macros

NOTE:

Before you begin to set up user-defined sequence steps, note that in most cases one of the predefined trigger macros (see page 62) will work.

You might need to set up a user-defined sequence step to

accommodate a condition not covered by the macros, or if you need to set up loops and jumps in the sequence. Each user-defined sequence step has a "fill-in-the-blanks" type statement. You use resource *terms* to fill in the statement with the appropriate values.

To Set Up a User-Defined Macro

- 1. Click a sequence step; select *Edit*.
- 2. Click Select New Macro; select the User level macro.
- 3. Select either Occurrence Counter or Timer.
- 4. If you selected *Occurrence Counter*, assign it to the *Find* or *else on* branch.
 - The occurrence counter can only be used in one branch at a time.
- 5. Select a resource term for the Find branch.
- 6. Set the occurrence field or timer.
- 7. Click the goto *level*; select a sequence level or *Trigger*.
- 8. Optional select a resource term for the else on branch.
- 9. Click *goto level*; select a sequence level or *Trigger*.
- 10. If you used any pattern terms, set the duration filter.

In the HP 16517A/18A logic analyzer, it is possible to have more than one trigger condition. The logic analyzer does not do any check on the trigger sequence; before running, make sure that the sequence will eventually trigger.

For more information on the functions available in a user-defined step, refer to:

- "Defining Resource Terms" on page 72
- "Setting Pattern Durations" on page 71
- "Using Occurrence Counters" on page 71
- "Using Timer Terms" on page 74
- "Limits on the Number of Simultaneous Terms" on page 75
- "Setting Up Loops and Jumps in the Trigger Sequence" on page 58

Setting Pattern Durations

When a bit pattern is found during a *trigger sequence*, you can influence when the term actually becomes "true" by assigning a time duration. The Set Pattern Duration statement is available in all sequence levels, but you may have to break down (see page 69) any macros.

Present/Absent field

This field determines whether the resource term becomes true after being present or absent for the specified time interval.

</> Field

This field allows you to choose whether the pattern duration is longer or shorter than the specified time. When < is selected, the resource is true for one clock cycle after a pattern is present/absent for less than the duration value.

When > is selected, additional control over pattern duration becomes available. This control allows you to pick what happens after the pattern has been present/absent for more than the duration value.

Until exit, Upon exit, Upon entry Field

This part of the Set Pattern Duration statement dictates how long the resource is true after the pattern duration is met. The Until Exit selection keeps the resource true from the time the duration is met, until the end of the pattern. The Upon Entry selection makes the resource true for only one clock cycle after the duration is met. The Upon Exit selection makes the statement true for one clock cycle after the end of the pattern.

Using Occurrence Counters

The occurrence counter is assigned to either the "Find" branch or the "else on" branch. Whatever positive number you assign to the counter, the pattern must be seen that number of times before the term becomes true.

Note that in order to count occurrences of a pattern with a > duration,

the *Upon Entry* or *Upon Exit* selections should be used. In the *Until Exit* mode, the occurrence counter is clocked at a 2 ns rate as long as the resource is true, in effect acting like a duration counter.

If the "else on" branch becomes true before all specified occurrences of the primary branch, the secondary "else on" branch is taken.

If you choose to use the occurrence counter in a sequence level, the timer is not available in that level.

Defining Resource Terms

Resource terms are variables that you can use in defining a trigger sequence. The terms available include bit patterns, edges, counters, and timers.

To Define a Resource Term

- 1. *Click* the appropriate tab to bring the group of terms forward.
- 2. Optional Click the term name and type in a new name.
- 3. Optional Click the label button to the right of the term name and choose *Replace*.
- 4. Select the *label* that you want to use.
- 5. Optional add more labels (see page 76) to the term.
- 6. Optional Set the numeric base.
- 7. Click the term value field, to the right of the label name.
- 8. For pattern terms, type in the term value. For edge terms, assign edges to appropriate bits.

See Also

"Using Bit Pattern Terms" on page 73

"Using Edge Terms (Timing Only)" on page 73

"Using Combinations of Terms" on page 75

"Using Timer Terms" on page 74

"Using Occurrence Counters" on page 71

"Adding and Deleting Labels for Terms" on page 76

"Numeric Base" on page 77

"Limits on the Number of Simultaneous Terms" on page 75

Using Bit Pattern Terms

Bit pattern resource *terms* can be set to match a numeric value or bit pattern on a group of data channels such as a bus. In order for a pattern to be found by the analyzer, the input data must match all bits of the pattern that are not defined as $Don't \ Cares \ (X)$. Bit patterns can also be used in a negated form.

To Define a Pattern Term

- 1. Click the *label* name to the right of the term name and choose the label that you want to use.
- 2. If necessary, add more labels (see page 76) to the term.
- 3. Click the term value field, to the right of the label name.
- 4. Type the pattern for each label. Depending on the base setting, such as hex or octal, some characters will not be accepted. Don't cares are indicated by an X.

Right-click on any of the bit pattern value fields to quickly assign the pattern term to a preset value. Clear(=X) sets the value to all X (don't cares). Set(=1) sets the value to all 1s. Reset(=0) sets the value to all 0s.

Using Edge Terms (Timing Only)

Edge *terms* are only available in the *timing* acquisition mode. You can set an edge term to match transitions on one or more channels. When you specify an edge on more than one channel, the analyzer logically *ORs* the edges together. When the analyzer sees a transition that matches any of the ones specified in the edge term, the term becomes

The Trigger Tab

true.

The following edge choices are available for each bit:

Rising edge (*)

Falling edge (*)

Either rising or falling

To Define an Edge Term

- 1. Click the label name and choose the *label* that you want to use.
- 2. Click the edge value field, to the right of the label name.
- 3. Set the edge for each channel.

 Don't cares are indicated by a (.).

NOTE:

After you close the edge term assignment dialog, you may see \$ indicators in the term value field. This symbol indicates that the value can't be displayed in the selected base. Choose Binary base to see the actual assignments.

Using Timer Terms

Timer options are selected from within sequence levels. The timer term is evaluated as either true or false. A true timer term lets the sequence evaluation continue within the current statement. Because the timer works exclusively for each level it is assigned to, it will not affect any other level or the trigger. However, each sequence level can have its own timer with different values assigned. The timer term options are used in the following ways:

Timer expired

The timer term becomes true when its assigned time expires.

Timer not expired

The timer term is true while the assigned time has not expired. Once expired, the timer term becomes false. This is like negating the timer.

The timer is started as the sequence level is entered. If you return to the same sequence level again, the timer will be restarted. If you choose to use the timer in a sequence level, the occurrence counter is not available in that level.

Using Combinations of Terms

Resource *terms* can be used in combinations. Combinations use the logical AND and OR functions to combine predefined resource terms.

To Set Up a Combination

- 1. Edit the sequence step (see page 58) that you want a combination term to appear in.
- 2. Click on the resource term assignment field that you want to make into a combination.
- 3. Choose Combo... from the menu of resource terms.
- 4. In the Combination dialog, click the *On/Off/Not* button for each term that you want to use and select *On* or *Not*.

 Not selects the logical negation of the term.
- 5. Click the logical operator buttons and choose a logic operation.

NOTE:

The combination of terms is now inserted into the term assignment field. If the term is too long to fit, the display is truncated.

Limits on the Number of Simultaneous Terms

The analyzer has four internal resources that it uses in trigger sequences. The four resources can be allocated across the four bit patterns and the two edges that are available in timing mode. Since there is a limit of four resources, you can not use all four bit patterns and both edges in a trigger sequence at the same time. It is possible to have all six resource term names assigned to different pattern and edge values; however, you will only be allowed to insert up to four of them in the trigger sequence.

Once you assign the four resources with both a resource term name and a value, the resources can be used either by themselves or in combination with each other.

The actual resource terms available for any particular assignment field

The Trigger Tab

varies depending on the acquisition mode, whether the timer or occurrence counter is used, and how many resource terms have already been used in other levels.

Pattern Durations

Pattern duration is assigned per sequence level. This means that you can assign a different duration to the same term name in a different sequence level. However, each time you use that same term with different duration values, you use up another resource. In other words, using one resource term four times with different pattern durations is equivalent to using all four resource terms once with the same duration.

Timer/Counters

There is one timer or counter available per sequence level. If you choose to use a timer in one sequence step, the occurrence counter is not available in that same step. On a per-sequence level basis, the timer/counter is either a timer or a counter, but not both.

Adding and Deleting Labels for Terms

Labels are defined in Format, after which they are available throughout the other analyzer areas and attached display tools.

When you use more than one label to define a trigger *term*, the term conditions must be true on both labels for the term to be true.

To Add a Label to a Resource Term

- 1. Click the label name.
- 2. Choose *Insert*.
- 3. Choose the label that you want to add to the resource term.

To Delete a Label from a Resource Term

- 1. Click the label name.
- 2. Choose Delete.

Numeric Base

All *labels* have a numeric base field next to them. The base choices are Binary, Octal, Decimal, Hex, ASCII, Symbol and Twos Complement.

To Change the Numeric Base

- 1. Click the base button.
- 2. Choose the base that you want.

NOTE:

If the numeric base is changed in one window, the base in other windows may not change accordingly. For example, the base assigned to symbols is unique, as is the base assigned in the Listing window.

Trigger Position Control

The Trigger Position control determines how much data is stored before and after the *trigger* occurs for all subsequent *acquisitions*. The point where the trigger occurred is placed at a specified position relative to the data in memory.

When a Run is started, the analyzer will not look for a trigger until at least the proper percentage of pretrigger data has been stored. After a trigger has been detected, the specified percentage of posttrigger data is stored before the analyzer halts.

The trigger position choices are Start, Center, End, User Defined, or Delay.

• Start

The trigger position is set at the starting point of available memory. This process results in maximum posttrigger data and minimum pretrigger data. Note that there will be a small amount of pretrigger data stored.

Center

The trigger position is set at the center point of available memory. This results in half pretrigger data and half posttrigger data.

• End

The Trigger Tab

The trigger position is set at the end point of available memory. This results in maximum pretrigger data and minimum posttrigger data. Note that there will be a small amount of posttrigger data stored.

User Defined

When the trigger position is set to User Defined, a trigger position slider appears. Use this slider to set the trigger position any where between 1% and 99%. As the slider is adjusted, the *% poststore* indicator shows the amount of data that will be stored after the trigger point.

Delay

This option delays the start of data storage until some time after the trigger. The range of the delay time is affected by the sample period, but the absolute minimum is 0 seconds, and the absolute maximum is 64 seconds.

Sample Period (Timing Only)

Sample Period is used to set the time period between data samples. Every time a new sample is taken, the analyzer will see updated measurement data. The choices available for sample period depend on the *acquisition* mode, which is set in the Format window.

In *full channel* mode, the Sample Period is configurable. A list of choices appear when the button is selected. In *half channel* mode, the analyzer will automatically run at a 250 ps sample period, and is not adjustable.

Oversampling: the Samples/Clock Control

(state only)

The Samples/Clock control sets the number of extra sample points (oversampling) between the edges of the external state clock. All oversampled points are evenly distributed within the period of the external state clock. Oversampling is set in powers of two, up to a maximum of 32, or a sample rate not exceeding 2 GSa/s. The equation

below shows how the maximum sample rate is limited:

(external clock rate) x (oversampled setting) = 2 GHz

The external clock rate is checked at each run. If at any time the rate of oversampling exceeds a 2 GHz rate, a lower Samples/Clock setting is automatically chosen. If you notice some of the higher oversampling rate choices are not available, this means those choices would have exceeded the 2 GHz sampling rate when multiplied by the external clock rate. The interface will not make those choices available to you until the external clock rate decreases.

Data

Viewing Oversampled Once Samples/Clock is set to a value greater than 1, an additional label called Ext Clk Edge becomes available in the display tools. A 1 (one, or logic high) on label Ext Clk Edge indicates states that were clocked by the external state clock signal. A 0 (zero, or logic low) indicates states that were oversampled.

NOTE:

The analyzer WILL NOT TRIGGER ON POINTS OF OVERSAMPLING. The only points where the analyzer will trigger is on external clock transitions. If triggering is needed on these oversampled points, and the state clock is <500 MHz, convert from state mode to timing mode where all triggering is at 500 MHz.

The figure below shows data at the external clock transitions, data at the points of oversampling, and the data points where the analyzer could trigger.

Arming Control

An instrument must be *armed* before it can look for its *trigger*. When you *Run* an instrument, it is armed immediately. When you are using more than one instrument, you can use one instrument to arm another. The logic analyzer can be armed by the *Run* button, a *Group Run* through the *Intermodule Bus* (IMB), or by an external signal through the *SMB Port* connector on the back panel.

To Arm the Analyzer Using Run or the SMB Port:

- 1. Select Arm in the menu bar.
- 2. Choose the option that you want.

To Arm the Analyzer Using the Intermodule Bus

Refer to Overview - Multiple Instrument Configuration (see the *HP 16600A/16700A Logic Analysis System* help volume).

Run/Group Run

Set the Arm control to Run if you are using just a single analyzer to make a measurement. When you select the Run/Stop button, you start the trigger sequence immediately.

SMB Port

Set the *Arm* control to *SMB Port* if you want to arm the analyzer with signal from an outside source. An arming signal can come from another module in the *frame*, such as an oscilloscope TRIG OUT signal. However, the only way the measurement can be time-correlated is if both the sending and receiving modules are configured as a Group Run in the Intermodule window. Generally, the SMB Port is used when you want an external trigger source to arm a module, or group of modules in the frame, or you want to take advantage of the faster arming path.

See Also

Overview - Multiple Instrument Configuration (see the HP 16600A/ $16700A\ Logic\ Analysis\ System\ help\ volume)$

NOTE:

Definition of Terms To understand the difference between specifications (see page 84) and characteristics (see page 84), and what gets a calibration procedure (see page 84) and what gets a function test (see page 85), refer to appropriate links within this note.

"HP 16517A/18A Logic Analyzer Specifications" on page 81

"HP 16517A/18A Logic Analyzer Characteristics" on page 81

HP 16517A/18A Logic Analyzer Specifications

The specifications are the performance standards against which the product is tested.

These specifications apply only to the HP 16517A/18A 4GHz Timing/1GHz State logic analyzer:

```
Minimum Input Voltage Swing: 500 mV peak to peak
Threshold Accuracy: +/-2% of input signal +/-50 mV
Minimum External Clock Period: 1 ns
Setup/Hold Time:
Per Pod:** 350 ps/350 ps
Across Pods: 750 ps/750 ps
350 ps/350 ps, with manual deskew
```

- * Specified for an input signal VH=-0.9 V, VL=-1.7 V, threshold=-1.3 V, slew rate=1 V/ns
- ** For the frequency range of 62.5 MHz to 20 MHz, a duty cycle of 40% to 60% is required.

HP 16517A/18A Logic Analyzer Characteristics

The characteristics are not specifications, but are included as additional information.

```
General information
- Channel Counts:
HP 16517A 16
with 1 HP 16518A 32
```

```
with 2 HP 16518As
                            48
    with 3 HP 16518As
    with 4 HP 16518As
  - Memory Depth:
    Half Channel
                            131072 samples per channel
    Full Channel
                             65536 samples per channel
Probes
  - Input DC Resistance:
                                100 Kohm, +/- 2%
  - Input Capacitance:
                                0.2 pF and then through 500 ohms, 3 pF
  - Input Impedance:
      DC through 400 ns rise time, 100 Kohm, typical
      3.5 ns through 350 ps, 500 ohm, typical
```


Impedance Curve

```
- Maximum Voltage:
                                   +/- 40 V peak CAT I
  - Threshold Range:
                                   +/- 5.0 V, adjustable in 10-mV increments
  - Threshold Setting:
                                   Preset TTL, ECL, or User-Defined on a
                                  per-pod basis.
+/- 5 V about the threshold
250 mV or 30% of input, whichever is
  - Input Dynamic Range:
  - Minimum Input Overdrive:
                                   greater, above the pod threshold.
State Analysis
  - Maximum External Clock Speed:
                                           1 GHz, requires a periodic clock
  - Minimum State Speed:
                                           20 MSa/s, requires a periodic
                                           clock
  - State Clocks:
                                           One external clock is available
                                           on the master card. No clocks
                                           are available on the expander
                                           card. Clock edge is selectable
                                           as rising or falling.
  - State Clock Duty Cycle Range:
1 GHz through 500 MHz:
                                           45% - 55%, typical
                                          30% - 70%, typical
20% - 80%, typical
       500 MHz through 250 MHz:
       250 MHz through 20 MHz:
  - Channel-to-Channel Skew:
       Per Pod:
                                           250 ps, typical
       Across Pods:
                                           1 ns, typical
                                           250 ps with manual deskew
                                           900 ps
  - Minimum Detectable Pulse Width:
                                           2x, 4x, 8x, 16x, and 32x, at a rate
  - Oversampling:
                                           up to 2 GSa/s.
  - Maximum Delay after Triggering:
                                   (2 to the 20th)x(sample period), or
                                   16.78 ms at or below 16 ns sample
                                   period.
```

```
Timing Analysis
  - Timing Modes:
                                 Conventional timing
  - Timing Speed:
      Full Channel
                                 15.3 KSa/s - 2 GSa/s
      Half Channel
                                  4 GSa/s
  - Sample Period:
      Full Channel
Half Channel
                                 500 ps minimum, 65.536 us maximum
                                 250 ps
  - Sample Period Accuracy:
                                  0.005% of sample period
  - Minimum Detectable Pulse Width:
                                 800 ps, typical
      4 GSa/s
      2 GSa/s or less
                                 1.1 ns, typical
  - Time Covered by Data:
      Minimum (2 or 4 GSa/s)
                                 32.8 us
      Maximum (15.3 KSa/s)
                                 4.3 s
                                 +/-( sample period + channel-to-
  - Time Interval Accuracy:
                                  channel skew + 0.005% of time
                                  interval reading )
  - Channel-to-Channel Skew:
                                 250 ps, typical
  - Maximum Delay after Triggering:
                                  (2 to the 20th)x(sample period), or
                                 16.78 ms at or below 16 ns sample
                                 period.
Triggering
  - State Sequence Levels:
                                       4 plus trigger point
                                       4 plus trigger point
  - Timing Sequence Levels:
  - Maximum Sequencer Speed:
                                       500 MHz
  - Maximum Occurrence Count Value:
                                      16,777,216
  - Pattern Recognizers:
                                       4. Each pattern recognizer is the
                                       AND combination of bit (0,1,X) patterns.
  - Pattern Width:
                                       16/32/48/64/80 channels.
  - Minimum Pattern Recognizer
    Pulse Width:
                                       2.25 ns
  - Edge Recognizers (Timing Only):
                                       2. Recognize rising, falling, or
                                       either edge on any channel. Edges are
                                       OR'd across all channels.
  - Edge Width:
                                       16/32/48/64/80 channels.
  - Edge Counting Frequency:
                                       444 MHz
                                       Up to 1 GHz.
  - Edge Detection:
                                       0 ns - 510 ns. Accuracy is +/- 2.25 ns. 4 ns - 510 ns. Accuracy is +/- 2.25 ns.
  - Greater Than Duration:
  - Less Than Duration:
   Resource Terms per Trigger
                                       4. Each edge recognizer and pattern
                                       recognizer of a specified duration count
    Specification
                                       as one resource term.
  - Branching:
                                       Each sequence level has two branching
                                       qualifiers. When the qualifier is
                                       satisfied, the analyzer will branch to
                                       the specified sequence level.
  - Timer/Counter:
                                       1 timer or counter per sequence level.
                                       Restarted upon each entry to each level.
  - Timer/Counter Range:
      Timing mode
                                       0 s to 33 ms
      State mode, 500 MHz to 1 GHz
                                       (ext. clock period)x(2 to the 23rd)
      State mode, less than 500 MHz
                                       (ext. clock period)x(2 to the 24th)
  - Timer Resolution:
      Timing mode
      State mode, above 500 MHz
State mode, below 500 MHz
                                       2x(ext. clock period)
                                       ext. clock period
  - Timer Accuracy:
                                       0.005% of timer value
Power Requirements
 All power supplies required for operating the logic analyzer are
  supplied through the backplane connector in the mainframe.
Operating Environment Characteristics

    Indoor use only.

  - Temperature
    Instrument:
                                          0 to 55 degrees C (+32
                                          to 131 degrees F)
```

Probe lead sets and cables: 0 to 65 degrees C (+32 to 149 degrees F)

- Humidity
Instrument, probe lead sets,

Instrument, probe lead sets,
and cables:

up to 95% relative humidity at
40 degrees C (+104 degrees F)
Altitude
To 4600 m (15,000 ft)

Vibration
Operating: Random vibration 5-500 Hz, 10 minutes per axis, approximately 0.3 g rms

approximately 0.3 g rms

Non-operating: Random vibration 5 to 500 Hz, 10 minutes per axis, approximately 2.41 g rms; and swept sine resonant search, 5 to 500 Hz, 0.75 g (0-peak), 5-minute resonant dwell at 4 resonances per axis.

What is a Specification

A *Specification* is a numeric value, or range of values, that bounds the performance of a product parameter. The product warranty covers the performance of parameters described by specifications. Products shipped from the factory meet all specifications. Additionally, the products sent to HP Customer Service Centers for calibration and returned to the customer meet all specifications.

Specifications are verified by Calibration Procedures.

What is a Characteristic

Characteristics describe product performance that is useful in the application of the product, but that is not covered by the product warranty. Characteristics describe performance that is typical of the majority of a given product, but not subject to the same rigor associated with specifications.

Characteristics are verified by Function Tests.

What is a Calibration Procedure

Calibration procedures verify that products or systems operate within the specifications. Parameters covered by specifications have a corresponding calibration procedure. Calibration procedures include both performance tests and system verification procedure. Calibration procedures are traceable and must specify adequate calibration standards.

Calibration procedures verify products meet the specifications by comparing measured parameters against a pass-fail limit. The pass-fail limit is the specification less any required guardband.

The term "calibration" refers to the process of measuring parameters and referencing the measurement to a calibration standard rather than the process of adjusting products for optimal performance, which is referred to as an "operational accuracy calibration".

What is a Function Test

Function tests are quick tests designed to verify basic operation of a product. Function tests include operator's checks and operation verification procedures. An operator's check is normally a fast test used to verify basic operation of a product. An operation verification procedure verifies some, but not all, specifications, and often at a lower confidence level than a calibration procedure.

The Symbols Tab

The Symbols tab offers control of the *symbols* capabilities. Symbols represent patterns and ranges of values found on labeled sets of bits. Two kinds of symbols are available:

- Object File Symbols. These are symbols from your source code and symbols generated by your compiler.
- User-Defined Symbols. These are symbols you create.

To load symbols, click one of the following:

- "To Load Object File Symbols" on page 88
- "To Load User-Defined Symbols" on page 100

Symbols are available for all state and timing analyzers. Each label listed in the Format menu can have its own group of symbols associated with it.

- "User-Defined Symbols" on page 99
- "Setting Up Object File Symbols" on page 88
- "Using Symbols In The Logic Analyzer" on page 101
- "Displaying Data in Symbolic Form" on page 87

Displaying Data in Symbolic Form

You can display data in symbolic form in some of the display tools, such as the Listing display and the Waveform display.

To View Symbolic Values in a Waveform Display

- 1. Right-click the label name where you want to display symbolic values.
- 2. Select Change attributes....
- 3. In the Attribute Dialog:
 - Set ShowValue to On.
 - Set Base to Symbols or Line#.
 - Click OK.

The symbolic names for the values now appear in the overlayed bus waveform.

To View Symbolic Values in a Listing Display

- 1. Right-click the numeric base of the label where you want to display symbolic values.
- 2. Set the numeric base to *Symbols* or *Line*#. The symbolic names for the values now appear instead of numeric data.

Setting Up Object File Symbols

Object file symbols can include variable names, procedure or function names, and source file names with line numbers. The linkage between symbol names and address or data values comes from one of two sources:

- Object files that are created by your compiler/linker.
- ASCII symbol files you create with a text editor.

To use object file symbols

- 1. Generate an object file with symbolic information using your software development tools.
- 2. If your language tools cannot generate object file formats that are supported by the logic analyzer, create an ASCII symbol file (see page 92).
- 3. Load the object file (see page 88) or ASCII symbol file into the logic analyzer.
- 4. If necessary, relocate sections of your code (see page 90).

"Using Symbols In The Logic Analyzer" on page 101

"Symbol File Formats" on page 91

To Load Object File Symbols

- 1. Select the Symbol tab and then the Object File tab.
- 2. Select the label name you want to load object file symbols for. In most cases you will select the label representing the address bus of the processor you are analyzing.
- 3. Specify the directory to contain the symbol database file (.ns) in the field under, *Create Symbol File* (.ns) in *This Directory*. Click *Browse*... if you wish to find an existing directory name.
- 4. In the Load This Object/Symbol File For Label field, enter the object file

See Also

name containing the symbols. Click Browse... to find the object file and click Load in the Browser dialog.

If your logic analyzer is NFS mounted to a network, you can select object files from other servers.

To reload object file symbols

- 1. Select the object file/symbol file to reload from the *Object Files with Symbols Loaded For Label* field.
- 2. Click the *Reload* button.

Value update

The values of the object file symbols being used as terms or as SPA state-interval ranges will be updated automatically each time the object file symbols are reloaded.

Configuration file save

The name of the current object file is saved when a configuration file is saved. The object file will be reloaded when the configuration is loaded.

Multiple files

You can load the same symbol file into several different analyzers, and you can load multiple symbol files into one analyzer. Symbols from all the files you load will appear together in the object file symbol selector that you use to set up resource terms.

Object file versions

During the load process, a symbol database file with a .ns extension will be created by the system. One .ns database file will be created for each symbol file you load. Once the .ns file is created, the Symbol Utility will use this file as its working symbol database. The next time you need to load symbols into the system, you can load the .ns file explicitly, by placing the .ns file name in the Load This Object/Symbol File For Label field.

If you load an object file that has been loaded previously, the system will compare the time stamps on the .ns file and the object file. If the object file is newer, the .ns file will be created. If the object file has not

Setting Up Object File Symbols

been updated since it was last loaded, the existing .ns file will be used.

See Also

"Using Symbols In The Logic Analyzer" on page 101

"Symbol File Formats" on page 91

Relocating Sections of Code

Use this option to add offset values to the symbols in an object file. You will need this if some of the sections or segments of your code are relocated in memory at run-time. This can occur if your system dynamically loads parts of your code so that the memory addresses that the code is loaded into are not fixed.

To Relocate a Single Section of Code

- 1. Click the *Symbol* tab and then the *Object File* tab.
- 2. In the *Object Files with Symbols Loaded For Label* list, select the file whose symbols you wish to relocate.
- 3. Select the *Relocate Sections...* button.
- 4. In the Section Relocation dialog, click the field you wish to edit in the section list.
- 5. Type in the new value for that field and press Enter on your keyboard.
- 6. Repeat steps 4 through 6 above for any other sections to be relocated.
- 7. Click Close.

To Relocate All Sections of Code

- 1. Click the *Symbol* tab and then the *Object File* tab.
- 2. In the *Object Files with Symbols Loaded For Label* list, select the file whose symbols you wish to relocate.
- 3. Select the *Relocate Sections...* button.
- 4. Type the desired offset in the *Offset all sections by* field. The offset is applied from the linked address or segment.

- 5. Click Apply Offset.
- 6. Click Close.

To Delete Object File Symbol Files

- 1. Click the *Symbol* tab, and then the *Object File* tab.
- 2. Select the file name you want to delete in the text box labeled, *Object Files with Symbols Loaded For Label*.
- 3. Click Unload.

Symbol File Formats

The logic analysis system can read symbol files in the following formats:

- OMF96
- OMFx86
- IEEE-695
- ELF/DWARF
- ELF/stabs
- TI COFF

For ELF/DWARF1, ELF/stabs, and ELF/stabs/Mdebug files, C++ symbols are demangled so that they can be displayed in the original C++ notation. To improve performance for these ELF symbol files, type information is not associated with variables. Hence, some variables (typically a few local static variables) may not have the proper size associated with them. They may show a size of 1 byte and not the correct size of 4 bytes or even more. All other information function ranges, line numbers, global variables and filenames will be accurate. These behaviors may be changed by creating a readers.ini (see page 97) file.

Setting Up Object File Symbols

See Also

"Creating ASCII Symbol Files" on page 92Creating ASCII Symbol Files

"Creating a readers.ini File" on page 97Creating a readers.ini File

Creating ASCII Symbol Files

If your language tool chain does not produce object files in a supported format, you can create an ASCII symbol file to define symbols. You can also use an ASCII symbol file to define symbols that are not included in your object file.

You can create an ASCII symbol file using any text editor that supports ASCII format text. Each entry in the file you create must be a string of ASCII characters consisting of a symbol name followed by an address or address range. The address or address range must be a hexadecimal number. It must appear on the same line of the text file as the symbol name and it must be separated from the symbol name by one or more blank spaces or tabs. Address ranges must be in the following format:

beginning address..ending address

Two formats are available for creating ASCII symbol files:

"Simple Format" on page 92

"Record Header Format" on page 93

NOTE:

It is possible to generate ASCII symbol files from the symbol or load map output of most language tools.

Simple Format

An ASCII symbol file can be a simple list of name/address pairs.

Example

main 00001000..00001009 test 00001010..0000101F var1 00001E22 #this is a variable

This example defines two symbols that correspond to address ranges and one point symbol that corresponds to a single address.

Record Header Format

An ASCII symbol file can be divided into records using key words, called *record headers*. The different records allow you to specify different kinds of symbols, with differing characteristics. An ASCII symbol file can contain any of the following kinds of records:

```
"Start Address" on page 94

"Sections" on page 94

"Functions" on page 94

"Variables" on page 96

"Source Line Numbers" on page 95

"Comments" on page 96
```

The record headers must be enclosed in square brackets, like this: [HEADER]. If no record header is specified, the lines following are assumed to be symbol definitions in one of the VARIABLES formats:

```
variable address
variable start..end
variable start address size
```

Example

Here is an ASCII symbol file that contains several different kinds of records.

```
[SECTIONS]
         00001000..0000101F
proq
         40002000..40009FFF
data
common
         FFFF0000..FFFF1000
[FUNCTIONS]
         00001000..00001009
main
test
         00001010..0000101F
[VARIABLES]
total
         40002000
                    4
value
         40008000
[SOURCE LINES]
File: main.c
10
         00001000
```

Setting Up Object File Symbols

11	00001002
14	0000100A
22	0000101E
File:	test.c
File:	00001010

Start Address . Format

```
[START ADDRESS] address
```

address - The address of the program entry point, in hexadecimal.

Example

```
[START ADDRESS] 00001000
```

Functions . Use FUNCTIONS to define symbols for program functions, procedures or subroutines.

Format

```
[FUNCTIONS]
func_name start..end

func_name - A symbol representing the function name.

start - The first address of the function, in hexadecimal.

end - The last address of the function, in hexadecimal.
```

Example

```
[FUNCTIONS]
main 00001000..00001009
test 00001010..0000101F
```

 $\bf Sections$. Use SECTIONS to define symbols for regions of memory, such as sections, segments, or classes.

Format

```
[SECTIONS] section_name start..end attribute
```

section_name - A symbol representing the name of the section.

start - The first address of the section, in hexadecimal.

end - The last address of the section, in hexadecimal.

attribute - (optional) Attribute may be one of the following:

NORMAL (default) - The section is a normal, relocatable section, such as code or data.

NONRELOC - The section contains variables or code that cannot be relocated. In other words, this is an absolute segment.

Example

[SECTIONS]		
prog	0000100000001FFF	
data	0000200000003FFF	
display io	000080000000801F	NONRELOC

NOTE:

If Section definitions are used in an ASCII symbol file, any subsequent Function or Variable definitions must fall within the address ranges of one of the defined Sections. Those Functions and Variables that do not will be ignored by the Symbol Utility.

Source Line Numbers . Use SOURCE LINES to associate addresses with lines in your source files.

Format

```
[SOURCE LINES]
File: file_name
line# address

file_name - The name of a file.
```

line# - The number of a line in the file, in decimal.

address - The address of the source line, in hexadecimal.

Setting Up Object File Symbols

Example

```
[SOURCE LINES]
File: main.c
10 00001000
11 00001002
14 0000100A
22 0000101E
```

See Also

Using the Source Viewer (see the *Listing Display Tool* help volume)

Variables. You can specify symbols for variables using:

- The address of the variable.
- The address and the size of the variable.
- The range of addresses occupied by the variable.

If you give only the address of a variable, the size is assumed to be 1 byte.

Format

```
[VARIABLES]
var_name start [size]
var_name start..end

var_name - A symbol representing the variable name.

start - The first address of the variable, in hexadecimal.

end - The last address of the variable, in hexadecimal.

size - (optional) The size of the variable, in bytes, in decimal.
```

Example

```
[VARIABLES]
subtotal 40002000 4
total 40002004 4
data_array 40003000..4000302F
status char 40002345
```

Comments. Any text following a # character is ignored by the Symbol Utility. The # can be used to comment a file. Comments can appear on a line by themselves, or on the same line, following a symbol entry.

Format

#comment text

Example

#This is a comment

Creating a readers.ini File

You can change how an ELF/Dwarf or ELF/stabs symbol file is processed by creating a reader.ini file.

- 1. Create the reader.ini file on your workstation or PC.
- 2. Copy the file to /hplogic/symbols/readers.ini on the logic analysis system.

Reader options

C++Demangle

```
1= Turn on C++ Demangling (Default)
0= Turn off C++ Demangling
```

C++DemOptions

```
803= Standard Demangling (Default Elf/Dwarf)
203= GNU Demangling (Default Elf/Stabs)
403= Lucid Demangling
800= Standard Demangling without function parameters
200= GNU Demangling without function parameters
400= Lucid Demangling without function parameters
```

MaxSymbolWidth

```
80= Column width max of a function or variable symbol Wider symbols names will be truncated. (Default 80 columns)
```

ReadElfSection

```
2= Process all globals from ELF section (Default)
Get size information of local variables
1= Get size information of global and local variables
Symbols for functions will not be read, and
only supplemental information for those symbols in the Dwarf
or stabs section will be read.
0= Do not read the Elf Section
```

If a file only has an ELF section this will have no effect and the ELF section will be read completely. This can occur if the file was created

Setting Up Object File Symbols

without a "generate debugger information" flag (usually -g). Using the -g will create a Dwarf or Stabs debug section in addition to the ELF section.

Dwarf1NoType

```
1= Use the new fast symbol reader for Dwarf1 (Default)
0= Use the previous version of the symbol reader
```

This symbol reader will be slow and may not be able to process all files. In addition the older symbol reader does not do C++ demangling. This symbol reader does process type information, so the sizes of local static and global variables will be processed.

Do not use this option unless you are having trouble reading the symbol file. This option will most likely be deleted in the future.

Example

```
[ReadersElf]
C
C
ReadElfSection=1
Dwarf1NoType=1
MaxSymbolWidth=60
```

User-Defined Symbols

"To Create User-Defined Symbols" on page 99

"To Replace User-Defined Symbols" on page 99

"To Delete User-Defined Symbols" on page 100

"To Load User-Defined Symbols" on page 100

To Create User-Defined Symbols

- 1. Under the Symbol tab, select the User Defined tab.
- 2. Select the label name you want to define symbols for.
- At the bottom of the User Defined tab, type a symbol name in the entry field.
- 4. Select a numeric base.
- 5. Select *Pattern* or *Range* type for the symbol.
- 6. Enter values for the pattern or range the symbol will represent.
- 7. Click Add.
- 8. Repeat steps 3 through 7 for additional symbols.
- 9. You can edit your list of symbols by using Replace (see page 99) and Delete (see page 100), if desired.

See Also

"Using Symbols In The Logic Analyzer" on page 101

To Replace User-Defined Symbols

- 1. Under the Symbol tab, select the User Defined tab.
- 2. Select the label you want to replace symbols for.

User-Defined Symbols

- 3. Select the symbol to replace.
- 4. At the bottom of the *User Defined* tab, modify the symbol name, numberic base, Pattern/Range type, and value, as desired.
- 5. Click the *Replace* button.
- 6. Repeat steps 3 through 5 to replace other symbols, if desired.

To Delete User-Defined Symbols

- 1. Under the Symbol tab, select the User Defined tab.
- 2. Select the label you want to delete symbols from.
- 3. Select the symbol to delete.
- 4. Click the *Delete* button.
- 5. Repeat steps 3 and 4 to delete other symbols, if desired.

To Load User-Defined Symbols

If you have already saved a configuration file, and the configuration included user-defined symbols, load the file with its symbols, as follows:

- 1. In the menu bar of your analyzer window, click *File* and then *Load Configuration*....
- 2. In the Load Configuration dialog, select the directory and filename to be loaded.
- 3. Select the target of the load operation.
- 4. *Click Load*.

 User-defined symbols that were resident in the logic analyzer when the configuration was saved are now loaded and ready to use.

See Also

"Using Symbols In The Logic Analyzer" on page 101

Using Symbols In The Logic Analyzer

The ways symbols can be used in the logic analyzer are listed below:

- "Using Symbols As Trigger Terms" on page 101
- "Using Symbols as Search Patterns in Listing Displays" on page 102
- "Using Symbols as Trigger Terms in the Source Viewer" on page 102
- "Using Symbols as Pattern Filter Terms" on page 103
- "Using Symbols as Ranges in the Software Performance Analyzer" on page 103
- "Displaying Data in Symbolic Form" on page 87

Using Symbols As Trigger Terms

You can use either one or both types of symbols as terms within your trigger sequence:

- Object File Symbols.
- User-Defined Symbols.
- 1. At the bottom of the analyzer Trigger window, click the label button next to one of the resource terms, and select *Replace*.
- 2. In the Resource selection dialog, select a label to be used in your trigger sequence.
 - Use a label that has symbols loaded.
- 3. Set the numeric base of the trigger term to *Symbols* or *Line* #s.
- 4. Click the button to the right of the numeric base field.
- 5. In the *Symbol Selector* (see page 103) dialog, select the symbol you want to use.

NOTE:

The values of object file symbols used as trigger terms are automatically updated when the object file symbols are reloaded (see page 88).

See Also

Setting Up a Trigger (see the HP 16600A-Series 100 MHz State/250 MHz Timing Logic Analyzer help volume)

Using Symbols as Search Patterns in Listing Displays

- 1. Under the Search tab in the Listing display, click Advanced searching.
- 2. In the Goto Pattern dialog, click *Define*.
- 3. In the Search Pattern dialog, select the *Symbols* numeric base.
- 4. Select Pattern, Range, Not Pattern, or Not Range.
- 5. Click the button to the right of the numeric base field.
- 6. In the *Symbol Selector* (see page 103) dialog, select the symbol you want to use.

See Also

Go to an Exact Pattern. (see the *Listing Display Tool* help volume)

Using Symbols as Trigger Terms in the Source Viewer

- 1. In the Source Viewer menu bar, click *Trace*, and select *Trace Setup*.
- 2. In the Source Line Trigger dialog, select *Symbols* or *Line* #s in the numeric base field.
- 3. Select Pattern, Range, Not Pattern, or Not Range.
- 4. Click the button to the right of the numeric base field.
- 5. In the *Symbol Selector* (see page 103) dialog, select the symbol you want to use.

See Also

To modify the trace setup. (see the *Listing Display Tool* help volume)

Using Symbols as Pattern Filter Terms

- 1. Click the numeric base field beside the selected filter term, and select *Symbols* or *Line* #s.
- 2. Select Pattern, Range, Not Pattern, or Not Range.
- 3. Select Remove Matching Data or Pass Matching Data, as desired.
- 4. Click the button to the right of the numeric base field.
- 5. In the *Symbol Selector* (see page 103) dialog, select the symbol you want to use.

Using Symbols as Ranges in the Software Performance Analyzer

- 1. In the SPA tool, click *Symbols* in the Define Ranges dialog.
- 2. In the Symbol Selector (see page 104) dialog, select the symbol or group of symbols you want to use as ranges in your measurement.

See Also

Defining State Interval Ranges. (see the *System Performance Analyzer* help volume)

Using the Symbol Selector Dialog

- 1. In the *Symbol Selector* dialog, select the symbol you want to use. All of your symbols for the current label, regardless of type, will be available in the dialog.
 - Use the Search Pattern (see page 104) field to filter the list of symbols by name. You can use the Recall button to recall a desired Search Pattern.
 - Use the Find Symbols of Type selections to filter the symbols by type.
- 2. Click the symbol you want to use in the list of *Matching Symbols*.
- 3. If you are using object file symbols, you may need to:
 - Set Offset By (see page 105) to compensate for microprocessor

Using Symbols In The Logic Analyzer

prefetches.

- Set Align to x Byte (see page 105) to trigger on odd-byte boundaries.
- 4. Select the Beginning, End, or Range of the symbol.
- 5. Click *OK*. The name of your symbol now appears as the value of the resource term.
- 6. Click *Cancel* to exit the *Symbol Selector* dialog without selecting a symbol.

Using the Symbol Selector Dialog

- 1. In the *Symbol Selector* dialog, select the symbol you want to use. All of your symbols, regardless of type, will be available in the dialog.
 - Use the Search Pattern (see page 104) field to filter the list of symbols by name. You can use the Recall button to recall a desired Search Pattern.
 - Use the Find Symbols of Type selections to filter the symbols by type.
- 2. Click and drag to select the symbols you want to use in the list of *Matching Symbols*.
 - Click Select All to select all symbols in the list.
 - Click *Unselect All* to unselect all symbols in the list.
- 3. Click *Add Selected Symbols To Range List* to place the selected symbols into the *Current ranges* list in the Define Ranges dialog.
- 4. Click *Close* to exit the *Symbol Selector* dialog.

Search Pattern

Use this field to locate particular symbols in the symbol databases. To use this field, type in the name of a file or symbol. The system searches the symbol database for symbols that match this name. Symbols that match appear in the list of *Matching Symbols*. You can also use wildcard characters to find symbols.

Asterisk wildcard (*)

The asterisk wildcard represents "any characters." When you perform a

search on the symbol database using just the asterisk, you will see a list of all symbols contained in the database. The asterisk can also be added to a search word to find all symbols that begin or end with the same letters. For example, to find all of the symbols that begin with the letters "st", select the Search Pattern field and type "st*".

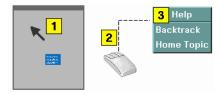
Align to x Byte Option

Most processors do not fetch instructions from memory on byte boundaries. In order to trigger a logic analyzer on a symbol at an odd-numbered address, the address must be masked off. The "Align to x Byte" option allows you to mask off an address.

Example

Assume the symbol "main" occurs at address 100F. The processor being probed is a 68040, which fetches instructions on long-word (4-byte) boundaries. In order to trigger on address 100F, the Align to x Byte option sets the two least-significant address bits to "don't cares". This qualifies any address from 100C through 100F.

Offset By Option


The Offset By option allows you to add an offset value to the starting point of the symbol that you want to use as a term. You might do this in order to trigger on a point in a function that is beyond the preamble of the function, or to trigger on a point that is past the prefetch depth of the processor. Setting an offset helps to avoid false triggers in these situations. The offset specified in the Offset By field is applied before the address masking is done by the "Align to x Byte" option.

Example

An 80386 processor has a prefetch depth of 16 bytes. Assume functions func1 and func2 are adjacent to each other in physical memory, with func2 following func1. In order to trigger on func2 without getting a false trigger from a prefetch beyond the end of func1, you need to add an offset value to your trigger term. The offset value must be equal to or greater than the prefetch depth of the processor. In this case, you would add an offset of 16 bytes to your trigger term. You would set the value of the "Offset By" field to 10 hex. Now, when you specify func2 as your trigger term, the logic analyzer will trigger on address func2+10.

Help - How to Navigate Quickly

- 1. Place mouse cursor anywhere in a help window.
- 2. Press the right mouse button.
- 3. Select desired destination.

You can also access all navigation and search commands from the help window menu bar.

Help - System Overview

The help system is divided into *System* Help, and *Tool* Help. All help is designed to be task oriented and specific to the window where tasks are performed.

Links, in most cases, are confined to topics in the specific window where help was requested. However, some links do go up to system-level topics from specific tool windows. When this occurrs, a second help window will appear. Since the definition of future tools is hard to link to, there are no links going from the system level down to specific tools.

System Help

The system help is accessed through the *Help* field in the menu bar of the main system window. It offers help on system-level topics and operations.

Tool Help

As you add new software and hardware tools to the system, the tool specific help is added. Tool specific help is accessed through the *Help* field in the menu bar of the specific tool windows.

Using Help

In addition to system and tool help, there is help on help called *Using Help*. Using Help shows you how to navigate and search the help systems and to print help topics. Using Help is accessed through the *Help* field in all windows.

See Also

Help - How to Navigate Quickly (see page 106)

Run/Group Run Function

- Setting a tool for independent or Group Run (see page 109)
- Setting Single or Repetitive Run (see page 110)
- "Checking Run Status" on page 110

Understanding Run/Run All/Group Run

The Run/Run All/Group Run buttons initiate data capture in the instrument tools you have configured. When an instrument tool is connected to analysis or display tools, any of the tools can initiate a run. When two or more instrument tools are configured, you can run them independently or as a group. Two or more instruments running as a group is called an Intermodule measurement.

Use the Intermodule Window (see the *HP 16600A/16700A Logic Analysis System* help volume) to coordinate the run function of multiple instruments as a "Group Run". A common "Group Run" configuration is to run the instrument tools at the same time. A more advanced measurement is to configure one instrument to arm another instrument, each with their own trigger conditions.

- Run appears in the setup dialog and icon menu of an instrument if it is not part of an Intermodule measurement.
- Group Run appears in the setup dialog and icon menu of each tool if two or more instruments are configured for an Intermodule measurement.
- Run All always appears in the System, Workspace and Run Status windows, and initiates a run in all configured instruments, whether they are run independently or are part of a Group Run.

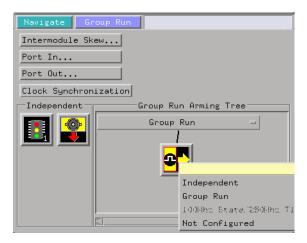
Intermodule measurements are configured between individual instruments. Arming between two machines that belong to one analyzer is configured in the *Arming Info...* dialog found in the *Trigger* window of the analyzer.

Understanding Stop/Stop All/Cancel

• Stop will terminate an individual instrument measurement that is running.

(perhaps waiting for a trigger condition)

- Stop All, when selected from the Workspace, will terminate running measurements from all instruments currently on the Workspace.
- Cancel will terminate the processing of trace data from an instrument to an analysis or display tool connected to its output.

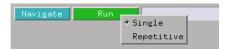

See Also "Demand Driven Data" on page 111

Setting a tool for independent or Group Run

Use the Intermodule Window to change between Group Run and independent Run.

- Click the Intermodule icon in the System Window, OR
- Use Navigate->System->Intermodule

In the Intermodule window, move instruments between independent Run and Group Run by clicking the icon and selecting the desired arming source. All instruments in "Group Run" will run simultaneously.



Setting Single or Repetitive Run

A single measurement will stop after memory is full or a store qualification is met. A repetitive measurement executes successive Single measurements until Stop is selected.

When a single or repetitive measurement is stopped, only data that has been captured to that point is available for viewing.

Select single or repetitive by right-clicking on the Run button in the tool's setup window.

If you have problems displaying trace data when running Repetitive measurements, see "Demand Driven Data" on page 111.

Checking Run Status

The *Run Status* dialog provides status information about the currently configured instruments, and the status of the run with respect to the trigger specification.

To access the *Run Status* dialog:

- The Run Status icon in the System Window, OR
- Navigate->System->Run Status

Demand Driven Data

When an analyzer measurement occurs, acquisition memory is filled with data that is then transferred to the display memory of the analysis or display tools you are using, as needed by those tools. In normal use, this *demand driven data* approach saves time by not transferring unnecessary data.

Since acquisition memory is cleared at the beginning of a measurement, stopping a run may create a discrepancy between acquisition memory and the memory buffer of connected tools. Without a complete trace of acquisition memory, the display memory will appear to have 'holes' in it which appear as filtered data.

This situation will occur in these cases:

- If you stop a repetitive measurement after analyzer data has been cleared and before the measurement is complete.
- If a trigger is not found by the analyzer and the run must be stopped to regain control.

To make sure all of the data in a repetitive run is available for viewing:

- In the workspace, attach a Filter tool to the output of the analyzer.
- In the Filter, select "Pass Matching Data"
- $\bullet~$ In the filter terms, assure the default pattern of all "Don't Cares" (Xs).

Chapter 1: HP 16517A/18A 4GHz Timing/1GHz State Logic Analyzer

Run/Group Run Function

This configuration will always transfer all data from acquisition memory. While this configuration will increase the time of each run, it will guarantee that repetitive run data is available regardless of when it is stopped.

absolute Denotes the time period or count of states between a captured state and the trigger state. An absolute count of -10 indicates the state was captured ten states before the trigger state was captured.

acquisition Denotes one complete cycle of data gathering by a measurement module. For example, if you are using an analyzer with 128K memory depth, one complete acquisition will capture and store 128K states in acquisition memory.

analysis probe A probe connected to the target microprocessor. It provides an interface between the signals of the target microprocessor and the inputs of the logic analyzer. Also called a "preprocessor".

analyzer 1 In a logic analyzer with two *machines*, refers to the machine that is on by default. The default name is *Analyzer*<*N*>, where N is the slot letter.

analyzer 2 In a logic analyzer with two *machines*, refers to the machine that is off by default. The default name is *Analyzer*<*N2*>, where N is the slot letter.

arming An instrument tool must be armed before it can search for its trigger condition. Typically,

instruments are armed immediately when Run or Group Run is selected. You can set up one instrument to arm another using the Intermodule Window. In these setups, the second instrument cannot search for its trigger condition until it receives the arming signal from the first instrument. In some analyzer instruments, you can set up one analyzer machine to arm the other analyzer machine in the Trigger Window.

asterisk (*) See *edge terms*, *glitch*, and *labels*.

bits Bits represent the physical logic analyzer channels. A bit is a *channel* that has or can be assigned to a *label*. A bit is also a position in a label.

card This refers to a single instrument intended for use in the HP 16600A-series or HP 16700A mainframe. One card fills one slot in the mainframe. A module may comprise a single card or multiple cards cabled together.

channel The entire signal path from the probe tip, through the cable and module, up to the label grouping.

click To click an item, position the cursor over the item. Then quickly press and release the *left mouse*

button.

clock channel A logic analyzer *channel* that can be used to carry the clock signal. When it is not needed for clock signals, it can be used as a *data channel*, except in the HP 16517A.

context record A context record is a small segment of analyzer memory that stores an event of interest along with the states that immediately preceded it and the states that immediately followed it.

context store If your analyzer can perform context store measurements, you will see a button labeled Context Store under the Trigger tab. Typical context store measurements are used to capture writes to a variable or calls to a subroutine, along with the activity preceding and following the events. A context store measurement divides analyzer memory into a series of context records. If you have a 64K analyzer memory and select a 16state context, the analyzer memory is divided into 4K 16-state context records. If you have a 64K analyzer memory and select a 64-state context, the analyzer memory will be divided into 1K 64-state records.

count The count function records

periods of time or numbers of state transactions between states stored in memory. You can set up the analyzer count function to count occurrences of a selected event during the trace, such as counting how many times a variable is read between each of the writes to the variable. The analyzer can also be set up to count elapsed time, such as counting the time spent executing within a particular function during a run of your target program.

cross triggering Using intermodule capabilities to have measurement modules trigger each other. For example, you can have an external instrument arm a logic analyzer, which subsequently triggers an oscilloscope when it finds the trigger state.

data channel A *channel* that carries data. Data channels cannot be used to clock logic analyzers.

data field A data field in the pattern generator is the data value associated with a single label within a particular data vector.

data set A data set is made up of all labels and data stored in memory of any single analyzer machine or instrument tool. Multiple data sets can be displayed together when sourced into a single display tool. The

Filter tool is used to pass on partial data sets to analysis or display tools.

debug mode See *monitor*.

delay The delay function sets the horizontal position of the waveform on the screen for the oscilloscope and timing analyzer. Delay time is measured from the trigger point in seconds or states.

demo mode An emulation control session which is not connected to a real target system. All windows can be viewed, but the data displayed is simulated. To start demo mode, select *Start User Session* from the Emulation Control Interface and enter the demo name in the *Processor Probe LAN Name* field. Click *Help* in the *Start User Session* window for details.

deskewing To cancel or nullify the effects of differences between two different internal delay paths for a signal. Deskewing is normally done by routing a single test signal to the inputs of two different modules, then adjusting the Intermodule Skew so that both modules recognize the signal at the same time.

don't care For *terms*, a "don't care" means that the state of the signal (high or low) is not relevant to the

measurement. The analyzer ignores the state of this signal when determining whether a match occurs on an input label. "Don't care" signals are still sampled and their values can be displayed with the rest of the data. Don't cares are represented by the X character in numeric values and the dot (.) in timing edge specifications.

dot (.) See *edge terms*, *glitch*, *labels*, and *don't care*.

double-click To double-click an item, position the cursor over the item, and then quickly press and release the *left mouse button* twice.

drag and drop To drag and drop an item, position the cursor over the item, and then press and hold the *left mouse button*. While holding the left mouse button down, move the mouse to drag the item to a new location. When the item is positioned where you want it, release the mouse button.

edge mode In an oscilloscope, this is the trigger mode that causes a trigger based on a single channel edge, either rising or falling.

edge terms Logic analyzer trigger resources that allow detection of transitions on a signal. An edge term can be set to detect a rising edge,

falling edge, or either edge. Some logic analyzers can also detect no edge or a *glitch* on an input signal. Edges are specified by selecting arrows. The dot (.) ignores the bit. The asterisk (*) specifies a glitch on the bit.

emulation module A module within the logic analysis system mainframe that provides an emulation connection to the debug port of a microprocessor. An E5901A emulation module is used with a target interface module (TIM) or an analysis probe. An E5901B emulation module is used with an E5900A emulation probe.

emulation probe The stand-alone equivalent of an *emulation module*. Most of the tasks which can be performed using an emulation module can also be performed using an emulation probe connected to your logic analysis system via a LAN.

emulator An *emulation module* or an *emulation probe*.

Ethernet address See *link-level address*.

events Events are the things you are looking for in your target system. In the logic analyzer interface, they take a single line. Examples of events

are Label1 = XX and Timer 1 > 400

filter expression The filter expression is the logical *OR* combination of all of the filter terms. States in your data that match the filter expression can be filtered out or passed through the Pattern Filter.

filter term A variable that you define in order to specify which states to filter out or pass through. Filter terms are logically OR'ed together to create the filter expression.

Format The selections under the logic analyzer *Format* tab tell the logic analyzer what data you want to collect, such as which channels represent buses (labels) and what logic threshold your signals use.

frame The HP 16600A-series or HP 16700A logic analysis system mainframe. See also *logic analysis system*.

gateway address An IP address entered in integer dot notation. The default gateway address is 0.0.0.0, which allows all connections on the local network or subnet. If connections are to be made across networks or subnets, this address must be set to the address of the

gateway machine.

glitch A glitch occurs when two or more transitions cross the logic threshold between consecutive timing analyzer samples. You can specify glitch detection by choosing the asterisk (*) for *edge terms* under the timing analyzer Trigger tab.

grouped event A grouped event is a list of *events* that you have grouped, and optionally named. It can be reused in other trigger sequence levels. Only available in HP 16715A, 16716A, and 16717A logic analyzers.

held value A value that is held until the next sample. A held value can exist in multiple data sets.

immediate mode In an oscilloscope, the trigger mode that does not require a specific trigger condition such as an edge or a pattern. Use immediate mode when the oscilloscope is armed by another instrument.

interconnect cable Short name for *module/probe interconnect cable*.

intermodule Intermodule is a term used when multiple instrument tools are connected together for the purpose of one instrument arming another. In such a configuration, an

arming tree is developed and the group run function is designated to start all instrument tools. Multiple instrument configurations are done in the Intermodule window.

intermodule bus The intermodule bus (IMB) is a bus in the frame that allows the measurement modules to communicate with each other. Using the IMB, you can set up one instrument to *arm* another. Data acquired by instruments using the IMB is time-correlated.

internet address Also called Internet Protocol address or IP address. A 32-bit network address. It is usually represented as decimal numbers separated by periods; for example, 192.35.12.6. Ask your LAN administrator if you need an internet address.

labels Labels are used to group and identify logic analyzer channels. A label consists of a name and an associated bit or group of bits. Labels are created in the Format tab.

line numbers A line number (Line #s) is a special use of *symbols*. Line numbers represent lines in your source file, typically lines that have no unique symbols defined to represent them.

link-level address Also referred to as the Ethernet address, this is the unique address of the LAN interface. This value is set at the factory and cannot be changed. The link-level address of a particular piece of equipment is often printed on a label above the LAN connector. An example of a link-level address in hexadecimal: 0800090012AB.

local session A local session is when you run the logic analysis system using the local display connected to the product hardware.

logic analysis system The HP 16600A-series or HP 16700A mainframe, and all tools designed to work with it. Usually used to mean the specific system and tools you are working with right now.

machine Some logic analyzers allow you to set up two measurements at the same time. Each measurement is handled by a different machine. This is represented in the Workspace window by two icons, differentiated by a I and a \mathcal{Z} in the upper right-hand corner of the icon. Logic analyzer resources such as pods and trigger terms cannot be shared by the machines.

markers Markers are the green and yellow lines in the display that are

labeled x, o, G1, and G2. Use them to measure time intervals or sample intervals. Markers are assigned to patterns in order to find patterns or track sequences of states in the data. The x and o markers are local to the immediate display, while G1 and G2 are global between time correlated displays.

master card In a module, the master card controls the data acquisition or output. The logic analysis system references the module by the slot in which the master card is plugged. For example, a 5-card HP 16555D would be referred to as *Slot C: machine* because the master card is in slot C of the mainframe. The other cards of the module are called *expansion cards*.

menu bar The menu bar is located at the top of all windows. Use it to select *File* operations, tool or system *Options*, and tool or system level *Help*.

message bar The message bar displays mouse button functions for the window area or field directly beneath the mouse cursor. Use the mouse and message bar together to prompt yourself to functions and shortcuts.

module An instrument that uses a single timebase in its operation. Modules can have from one to five cards functioning as a single instrument. When a module has more than one card, system window will show the instrument icon in the slot of the *master card*.

module/probe interconnect cable

The module/probe interconnect cable connects an E5901B emulation module to an E5900B emulation probe. It provides power and a serial connection. A LAN connection is also required to use the emulation probe.

monitor When using the Emulation Control Interface, running the monitor means the processor is in debug mode (that is, executing the debug exception) instead of executing the user program.

panning The action of moving the waveform along the timebase by varying the delay value in the Delay field. This action allows you to control the portion of acquisition memory that will be displayed on the screen.

pattern mode In an oscilloscope, the trigger mode that allows you to set the oscilloscope to trigger on a specified combination of input signal

levels.

pattern terms Logic analyzer resources that represent single states to be found on labeled sets of bits; for example, an address on the address bus or a status on the status lines.

period (.) See *edge terms*, *glitch*, *labels*, and *don't care*.

pod See pod pair

pod pair A group of two pods containing 16 channels each, used to physically connect data and clock signals from the unit under test to the analyzer. Pods are assigned by pairs in the analyzer interface. The number of pod pairs avalaible is determined by the channel width of the instrument.

point To point to an item, move the mouse cursor over the item.

preprocessor See analysis probe.

primary branch The primary branch is indicated in the *Trigger* sequence step dialog box as either the *Then find* or *Trigger* on selection. The destination of the primary branch is always the next state in the sequence, except for the HP 16517A. The primary branch has an optional occurrence count field

that can be used to count a number of occurrences of the branch condition. See also *secondary branch*.

probe A device to connect the various instruments of the logic analysis system to the target system. There are many types of probes and the one you should use depends on the instrument and your data requirements. As a verb, "to probe" means to attach a probe to the target system.

processor probe See *emulation* probe.

range terms Logic analyzer resources that represent ranges of values to be found on labeled sets of bits. For example, range terms could identify a range of addresses to be found on the address bus or a range of data values to be found on the data bus. In the trigger sequence, range terms are considered to be true when any value within the range occurs.

relative Denotes time period or count of states between the current state and the previous state.

remote display A remote display is a display other than the one connected to the product hardware. Remote displays must be identified to the network through an address

location.

remote session A remote session is when you run the logic analyzer using a display that is located away from the product hardware.

right-click To right-click an item, position the cursor over the item, and then quickly press and release the *right mouse button*.

sample A data sample is a portion of a *data set*, sometimes just one point. When an instrument samples the target system, it is taking a single measurement as part of its data acquisition cycle.

Sampling Use the selections under the logic analyzer Sampling tab to tell the logic analyzer how you want to make measurements, such as State vs. Timing.

secondary branch The secondary branch is indicated in the *Trigger* sequence step dialog box as the *Else* on selection. The destination of the secondary branch can be specified as any other active sequence state. See also *primary branch*.

session A session begins when you start a *local session* or *remote* session from the session manager, and ends when you select *Exit* from

the main window. Exiting a session returns all tools to their initial configurations.

skew Skew is the difference in channel delays between measurement channels. Typically, skew between modules is caused by differences in designs of measurement channels, and differences in characteristics of the electronic components within those channels. You should adjust measurement modules to eliminate as much skew as possible so that it does not affect the accuracy of your measurements.

state measurement In a state measurement, the logic analyzer is clocked by a signal from the system under test. Each time the clock signal becomes valid, the analyzer samples data from the system under test. Since the analyzer is clocked by the system, state measurements are synchronous with the test system.

store qualification Store qualification is only available in a state measurement, not timing measurements. Store qualification allows you to specify the type of information (all samples, no samples, or selected states) to be stored in memory. Use store qualification to prevent memory from being filled

with unwanted activity such as noops or wait-loops. To set up store qualification, use the *While storing* field in a logic analyzer trigger sequence dialog.

subnet mask A subnet mask blocks out part of an IP address so that the networking software can determine whether the destination host is on a local or remote network. It is usually represented as decimal numbers separated by periods; for example, 255.255.255.0. Ask your LAN administrator if you need a the subnet mask for your network.

symbols Symbols represent patterns and ranges of values found on labeled sets of bits. Two kinds of symbols are available:

- Object file symbols Symbols from your source code, and symbols generated by your compiler. Object file symbols may represent global variables, functions, labels, and source line numbers.
- User-defined symbols Symbols you create.

Symbols can be used as *pattern* and *range* terms for:

Searches in the listing display.

- Triggering in logic analyzers and in the source correlation trigger setup.
- Qualifying data in the filter tool and system performance analysis tool set.

system administrator The system administrator is a person who manages your system, taking care of such tasks as adding peripheral devices, adding new users, and doing system backup. In general, the system administrator is the person you go to with questions about implementing your software.

target system The system under test, which contains the microprocessor you are probing.

terms Terms are variables that can be used in trigger sequences. A term can be a single value on a label or set of labels, any value within a range of values on a label or set of labels, or a glitch or edge transition on bits within a label or set of labels.

TIM A TIM (Target Interface Module) makes connections between the cable from the emulation module or emulation probe and the cable to the debug port on the system under test.

timer terms Logic analyzer resources that are used to measure the time the trigger sequence remains within one sequence step, or a set of sequence steps. Timers can be used to detect when a condition lasts too long or not long enough. They can be used to measure pulse duration, or duration of a wait loop. A single timer term can be used to delay trigger until a period of time after detection of a significant event.

time-correlated Time correlated measurements are measurements involving more than one instrument in which all instruments have a common time or trigger reference.

timing measurement In a timing measurement, the logic analyzer samples data at regular intervals according to a clock signal internal to the timing analyzer. Since the analyzer is clocked by a signal that is not related to the system under test, timing measurements capture traces of electrical activity over time. These measurements are asynchronous with the test system.

tools A tool is a stand-alone piece of functionality. A tool can be an instrument that acquires data, a display for viewing data, or a post-processing analysis helper. Tools are represented as icons in the main

window of the interface.

toolbox The Toolbox is located on the left side of the main window. It is used to display the available hardware and software tools. As you add new tools to your system, their icons will appear in the Toolbox.

tool icon Tool icons that appear in the workspace are representations of the hardware and software tools selected from the toolbox. If they are placed directly over a current measurement, the tools automatically connect to that measurement. If they are placed on an open area of the main window, you must connect them to a measurement using the mouse.

trace See acquisition.

trigger Trigger is an event that occurs immediately after the instrument recognizes a match between the incoming data and the trigger specification. Once trigger occurs, the instrument completes its *acquisition*, including any store qualification that may be specified.

trigger sequence A trigger sequence is a sequence of events that you specify. The logic analyzer compares this sequence with the samples it is collecting to determine when to *trigger*.

trigger specification A trigger specification is a set of conditions that must be true before the instrument triggers.

workspace The workspace is the large area under the message bar and to the right of the toolbox. The workspace is where you place the different instrument, display, and analysis tools. Once in the workspace, the tool icons graphically represent a complete picture of the measurements.

zooming In the oscilloscope or timing analyzer, to expand and contract the waveform along the time base by varying the value in the s/Div field. This action allows you to select specific portions of a particular waveform in acquisition memory that will be displayed on the screen. You can view any portion of the waveform record in acquisition memory.

Symbols

&, 71

&> duration trigger field, 71

*, bit assignment, 50

+, label polarity, 53

-, label polarity, 53

., bit unassignment, 50

Numerics

1 GHz full channel state mode, 47 16517/18A logic analyzer, testing, 46 16517-68701 master kit, 11 16518-68701 expander kit, 11 2 GHz full channel timing mode, 47 4 GHz half channel timing mode, 47

A

acquisition modes, timing, 47
acquisition modes, when to set, 18
acquisitions, interpreting, 30
acquisitions, processing, 30
activity indicator, in Format, 50
Align to x Byte option, 105
Align to x Byte option for symbols, 105
altitude characteristics, 81
analyzer, arming, 80
arming analyzer, 80
arming control, 80
arrows, activity indicators, 54
ASCII format, 92
ASCII format symbols, 92, 93, 94,

acquisition modes, state, 47

В

95, 96

ASCII symbol file, 95

bad data in measurement, 44 base, numeric, 77

basic state measurements, example, 26 basic timing measurements, example, 22 beyond prefetch depth, 105 bit activity indicator, 50 bit assignment, 50 bit assignments, 52 bit order, changing, 51 bit pattern terms, 73 bit reference line, 50 bit significance, 50 bits, assigning, 50 bits, maximum per label, 50 bits, reordering, 51 BNC to SMB adapter, 11 break down macros, 69 browser dialog, 101 browser, symbol search, 101 browsing, 104 browsing the symbol database, 104 byte mode, numeric base, 77

C

cable activity indicators, 54
cable information, 13
calibration, operational accuracy, 16
cancel, 108
capacitive loading, 45
center trigger position, 77
channel activity indicators, 54
channel counts, characteristic, 81
channels, assigning to label, 49
channels, maximum per label, 50
channel-to-channel skew,
characteristic, 81
characteristic, 84
clear menu, 60

clear sequence levels, 60

clock channel, 13

clear sequence/resource/name, 60

clock duty cycle requirements, characteristic, 81 clock edge, adjusting, 49 clock threshold level note, 53 clock, defining, 48 clocks, when to set, 18 code, assigning address offsets, 90 combination terms, 75 comments, 96 configuration files, loading, 34 configurations, compatibility across models, 34 configurations, storing, 34 connection methods, overview, 10 connections, 17 conventional timing acquisition modes, 47 count states timing macro, 63 creating a file, 92 creating ASCII symbol files, 92 custom state macros, 66 custom timing macros, 63 custom trigger macros, 59

D

dashes, activity indicators, 54 data channels are not connected properly message, 42 data channels, naming, 49 data displayed in symbolic form, 87 data may not be valid message, 40 data set, interpreting, 30 defaulting the trigger, 60 definition, 84 definition, calibration procedure, definition, function test, 85 definition, operational accuracy calibration, 84 definition, specification, 84 delay trigger position, 77 demand driven data, 111

depth of memory, characteristic, 81 deskewing, 16 disable/enable run status window, 110 displaying symbols to represent data, 87 E edge terms, 73 edge trigger macro, 65 edge trigger terms, 73 edge within pattern macro, 64 edit sequence steps, 56 edit trigger sequence steps, 58 ELF/DWARF file format, 91 ELF/stabs file format, 91 else on branch, 58 end trigger position, 77 environmental characteristics, 81 error message, sample rate exceeds trigger sequencer rate, 41 error message, trigger may not be included in acquired data, 41 error messages, cannot run, 39 error messages, clock is not connected properly, 42 error messages, data channels not connected, 42 error messages, invalid card configuration, 38 error messages, invalid skew values, 44 error messages, invalid skew values, 44 error messages, maximum of 32 channels per label, 37 error messages, measurement halted, 39 error messages, memory failed, 38 error messages, oversampled	error messages, skew values are from a different instrument, 38 error messages, skew values do not match, 42 error messages, skew values from different instrument, 43 error messages, trigger rate exceeds sample rate, 41 error messages, trigger sequencer, 41 error messages, using default 16517/18 skew values, 37 error messages, waiting for trigger, 36 errors in data, 44 errors, error messages, 35 example, 93, 104, 105 ext clk edge, 78 F file formats for ASCII symbols, 92 file versions, 88 files, loading user-defined symbol files, 100 find early event state macros, 68 find edge macro, 63 find event state macros, 66 find late event state macros, 66 find pattern state macros, 67 find sequence state macros, 67 finding the symbol you want, 104 flowchart, 17 format tab, use, 18, 47 full channel, timing, 47 functions, 94 G glossary of terms, 2 group bit assignment, 50	H half channel, timing, 47 help, 106, 107 help, how to use, 107 help, symbols, 86 help, trigger, 80 help, trigger sequence, 61 how to set up, 17 HP 16517A logic analyzer, 2 HP 16517A/18A characteristics, 81 HP 16518A expansion logic analyzer, 2 humidity characteristics, 81 I IEEE-695 file format, 91 if branch, 58 in ASCII format, 94, 95, 96 in symbol browser, 104 independent run, 108 input capacitance, probe, characteristic, 81 input impedance, probe, characteristic, 81 input resistance, probe, characteristic, 81 internal sequence, 61 internal sequence levels, 62 L label polarity, changing, 53 labels, 19, 50 labels, activating, 52 labels, add after, 52 labels, add pefore, 52 labels, adding, 52 labels, deleting, 59 labels, deleting, 59 labels, deleting, 59 labels, deleting from terms, 76
		labels, deleting, 52 labels, deleting from terms, 76 labels, inserting, 52

memory depth, characteristic, 81

minimum detectable pulse width,

minimum external clock period,

minimum input overdrive, 14

messages, pod identified, 41

characteristic, 81

specification, 81

P labels, inserting on terms, 76 minimum input voltage swing, labels, polarity, 53 specification, 81 pattern after edge macro, 64 labels, reordering bits, 51 minimum signal amplitude, 14 pattern count, state trigger, 71 labels, turning off, 52 pattern duration macro, 63 labels, turning on, 52 Ν pattern duration, characteristic, 81 line numbers, 95 pattern durations, setting, 71 negative logic, note, 53 load, reducing, 45 note, activity indicators, 54 Pattern field, 104 loading, 88 pattern recognizers, characteristic, note, maximum bits per label, 50 loading files including symbols, 88 note, negative logic, 53 loading object file symbols, 88 pattern, state trigger macros, 67 note, reorder bits, 51 loading user-defined symbol files, pattern/edge trigger macros, 64 100 performance verification, 16517/ 0 logic analyzer hangs, 35 18A, 46 object file symbol browser, 101 period, sample time, 78 object file symbol files, 88 \mathbf{M} pod id button, 13 object file symbols, 101, 104 pod thresholds, setting, 53 macros, user-defined, 58 occurrence counter, characteristic, predefined macros, 62 main system help page, 2 predefined trigger macros, 62 masking off addresses of symbols, occurrence counter, state trigger, predefined trigger macros, 105 displaying, 69 maximum delay after triggering, occurrence counters, when reset, predefined trigger macros, characteristic, 81 58 modifying, 69 maximum ground length occurs field, 71 prefetch, 105 recommendations, 10 odd-numbered addresses, 105 probe leads, 10 maximum input voltage, 13, 14 odd-numbered addresses probes, accessory kit, 11 maximum input voltage, represented by symbols, 105 probes, equivalent circuit, 13 characteristic, 81 offset, 105 probes, general-purpose, 10 measurement doesntrun', 35 offset addresses, assigning, 90 probes, ground leads, 11 measurement halted message, 39 Offset By option of the symbol measurement, run options, 108 probes, recommendations, 10 browser, 105 probes, signal leads, 11 measurements, overview of basic OMF96 file format, 91 probing accessories, 11 state, 26 OMFx86 file format, 91 probing individual lines, 10 measurements, overview of timing, operating environment probing options, 10 22 characteristics, 81 memory and trigger, 77 problems making measurements, options, run, 108 memory depth, 47 35 overdrive, definition, 15

oversample, 78

17

oversampling, characteristic, 81

overview, measurement process,

oversampling, what is, 78

pulse width macro, 65

radix, numeric base, 77

rate, sample period, 78

recalling trigger sequences, 59

readers.ini file, 97

R

record headers, 93 skew, channel-to-channel, target system, probing, 10 relocating sections of code, 90 characteristic, 81 temperature characteristics, 81 repetitive, 108 source line numbers, 95 terms, 19 repetitive data display, 111 then branch. 58 speed, state/timing, characteristic, reset bit pattern, 73 81 threshold accuracy, specification, restore macros, 69 start address, 94 results, 104 start trigger position, 77 threshold logic levels, ECL, 53 roadmap, 17 state channel width, 47 threshold logic levels, TTL, 53 run, 108 state clock pulse width, threshold range, probe, run options, 110 characteristic, 81 specification, 81 run status, checking, 110 state clocks, characteristic, 81 TI COFF file format, 91 run status, disable window, 110 state macros, 62 time covered by data, state macros, predefined, 66 characteristic, 81 \mathbf{S} state measurements, basic time interval accuracy. overview, 26 characteristic, 81 sample offset field, 49 state modes, 47 time violation macros, 65 sample period, 78 state speed, characteristic, 81 timer, characteristics, 81 sample period, characteristic, 81 state trigger macros, 66, 67, 68 timers, using, 74 sample rate, setting, 47 status, 110 timers, when reset, 58 samples/clock control, 78 stop, 108 timing analysis characteristics, 81 saving trigger sequences, 59 storing trigger setups, 59 timing macros, 62 Scroll Files field, 101 symbol demangling, 97 timing macros, basic predefined, Search Pattern field, 104 symbol file formats, 91 63 searching the symbol database, 104 symbol file versions, 88 timing macros, predefined, 63 sections, 94 symbol selector dialog, 103, 104 timing measurements, basic selecting macros, 56 symbol type, 101 overview, 22 self test, HP 16517A, 46 symbol types, 101 timing modes, 47 self test, HP 16518A, 46 symbols, 104 timing speed, characteristic, 81 sequence levels, characteristic, 81 symbols, displaying to represent timing, memory depth, 47 sequencer, maximum levels, data, 87 trigger bit patterns, 72 characteristic, 81 symbols, how they are used in the trigger characteristics, 81 set up, trigger sequence, 58 logic analyzer, 101 trigger edge terms, 72 setting threshold, 53 symbols, loading object file trigger edit, 56 settings, saving, 34 symbols, 88 trigger macros, 61 setup/hold time, specification, 81 trigger macros, creating, 69 symbols, loading user-defined shortcut, bit assignment, 50 symbol files, 100 trigger macros, modifying, 69 signal loading, 14 symbols, setting up, 88 trigger macros, pattern/edge, 64 signals, requirements, 14 symbols, types and use, 86 trigger macros, predefined, 62 simple example, 92 symbols, user-defined details, 99 trigger macros, selecting, 56 simple form, 92 trigger macros, state, 66, 67, 68 single, 108 trigger macros, time violation, 65 skew adjust tab, 16 trigger macros, timing, 63 tab, symbols, 86 trigger macros, user-defined, 69

trigger macros, using, 55 trigger pattern macros, 63 trigger pattern terms, 72 trigger position control, 77 trigger resource terms, 72 trigger resource terms, 72 trigger sequence branches, 58 trigger sequence jumps, 58 trigger sequence levels, goto, 58 trigger sequence levels, goto, 58 trigger sequence steps, 56 trigger sequence steps, 56 trigger sequence steps, copying, 57 trigger sequence steps, editing, 58 trigger sequence steps, editing, 58 trigger sequence, adding steps, 57 trigger sequence, clearing, 60 trigger sequence, customizing, 69 trigger sequence, default, 60 trigger sequence, deleting, 57 trigger sequence, editing, 57 trigger sequence, explanation, 61 trigger sequence, inserting, 57 trigger sequence, specifying, 55 trigger sequence rate exceeds sample rate note, 41 trigger sequences, loading, 59 trigger sequences, soving, 59 trigger sequences, storing, 59 trigger sequences, storing, 59 trigger sequences, storing, 59 trigger term, 101, 105 trigger term, 101, 105 trigger terms, adding labels, 76 trigger terms, combination, 75 trigger terms, deleting labels, 76 trigger terms, deleting labels, 76 trigger terms, limits on, 75 trigger terms, limits on, 75 trigger terms, timers, 74	trigger variables, 72 trigger, continue timer, 74 trigger, pattern durations, 71 trigger, pause timer, 74 trigger, poststore, 77 trigger, resetting, 60 trigger, setting up, 55 trigger, start timer, 74 trigger, stop timer, 74 trigger, stop timer, 74 trigger, substeps, 19 triggering beyond, 105 triggering on a symbol, 101, 104, 105 troubleshooting the logic analyzer, 35 U unassigned bits, 50 user macros, trigger, 59 User Symbols, 101 user threshold logic level, 53 user-defined macros, 58, 62, 69 user-defined symbol files, loading, 100 user-defined symbols, details, 99 user-defined trigger, 69 V variables, 96 versions, 88 versions of symbol files, 88 vibration characteristics, 81 W wait state macros, 68 wait time macro, 65 warning messages, using default skew values, 43 warranty, what is covered, 84 wildcard characters, 104

Index		